- Thread starter
- #1

w is a fixed complex number and \( 0<arg(w)<\frac{\pi}{2} \). Mark A and B, the points representing w and iw, on the Argand dagram. P represents the variable complex number z. Sketch on the same diagram, the locus of P in each of the following cases: (i) \( |z-w|=|z-iw| \) (ii) \(arg(z-w)=arg(iw)\)

Find in terms of w, the complex number representing the intersection of the two loci.

I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.

Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?

Find in terms of w, the complex number representing the intersection of the two loci.

I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.

Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?

Last edited: