- Thread starter
- #1

- Thread starter Yankel
- Start date

- Thread starter
- #1

\(\displaystyle \displaystyle \begin{align*} \int{\frac{3x}{4x-1}\,dx} &= \frac{3}{4}\int{\frac{4x}{4x-1}\,dx} \\ &= \frac{3}{4}\int{\frac{4x-1 + 1}{4x - 1}\,dx} \\ &= \frac{3}{4}\int{1 + \frac{1}{4x-1}\,dx} \\ &= \frac{3}{4} \left( x + \frac{1}{4}\ln{ | 4x - 1 | } \right) + C \end{align*}\)Hello

I am trying to solve the integral of the function:

3x/(4x-1)

Need some help with it, I am stuck...

Thanks !

- May 13, 2013

- 386

did you use partial fraction here?\(\displaystyle \displaystyle \begin{align*} \int{\frac{3x}{4x-1}\,dx} &= \frac{3}{4}\int{\frac{4x}{4x-1}\,dx} \\ &= \frac{3}{4}\int{\frac{4x-1 + 1}{4x - 1}\,dx} \\ &= \frac{3}{4}\int{1 + \frac{1}{4x-1}\,dx} \\ &= \frac{3}{4} \left( x + \frac{1}{4}\ln{ | 4x - 1 | } \right) + C \end{align*}\)

- May 13, 2013

- 386

getting the derivative of u, du = 4dx, dx = 1du/4

now plug those values

∫{[3(u+1)/4]/4u]}du

∫[(3u+3)/16u]du

3/16(∫du+∫1/u*du)

3/16*u+3/16*ln|u|+c

3/16*(4x-1)+3/16*ln|4x-1| --- this is what i get when i use substitution method. am I correct?

- Feb 5, 2012

- 1,621

Yes, it can be thought of as a partial fraction decomposition of \(\frac{4x}{4x-1}\). An easy method to find the partial fractions in this case is the technique used by Prove It; writing the numerator as \(4x-1+1\).did you use partial fraction here?

Yes, your method is perfect. Note that after a few algebraic simplifications you arrive at the same result obtained by Prove It.

getting the derivative of u, du = 4dx, dx = 1du/4

now plug those values

∫{[3(u+1)/4]/4u]}du

∫[(3u+3)/16u]du

3/16(∫du+∫1/u*du)

3/16*u+3/16*ln|u|+c

3/16*(4x-1)+3/16*ln|4x-1| --- this is what i get when i use substitution method. am I correct?

\[\frac{3}{16}(4x-1)+\frac{3}{16}\ln|4x-1|+C=\frac{3}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)+C-\frac{3}{16}\]

\(A=C-\frac{3}{16}\) is an arbitrary constant. Therefore,

\[\frac{3}{16}(4x-1)+\frac{3}{16}\ln|4x-1|+C=\frac{3}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)+A\]

- Jan 29, 2012

- 1,153

The integral becomes

[tex]\int \frac{3\frac{u+1}{4}}{u}(du/4)[/tex][tex]= \frac{3}{16}\int \frac{u+1}{u}du[/tex][tex]= \frac{3}{16}\int 1+ \frac{1}{u}du[/tex]