- Thread starter
- #1
- Jan 31, 2012
- 253
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,
$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$
When I post integral challenge problems in the future, I'll just number them.
$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$
When I post integral challenge problems in the future, I'll just number them.