- Thread starter
- #1

- Apr 14, 2013

- 4,008

Hey!!

A square with the side length $2^n$ length units (LU) is divided in sub-squares with the side length $1$. One of the sub-squares in the corners has been removed. All other sub-squares should now be covered completely and without overlapping with L-stones. An L-stone consists of three sub-squares that together form an L.

I want to draw the problem for the first three cases described above ($1 \leq n \leq 3$).

Then I want to show the following using induction:

For all $n \in N$ the square with side length $2^n$ LU can be covered completely and without overlapping with L-stones, after one of the sub-squares in the corners has been removed.

For the first part:

Is the drawing correct?

A square with the side length $2^n$ length units (LU) is divided in sub-squares with the side length $1$. One of the sub-squares in the corners has been removed. All other sub-squares should now be covered completely and without overlapping with L-stones. An L-stone consists of three sub-squares that together form an L.

I want to draw the problem for the first three cases described above ($1 \leq n \leq 3$).

Then I want to show the following using induction:

For all $n \in N$ the square with side length $2^n$ LU can be covered completely and without overlapping with L-stones, after one of the sub-squares in the corners has been removed.

For the first part:

Is the drawing correct?

Last edited by a moderator: