Independence of Trace-Partition function

In summary, the partition function for a system of two completely decoupled subsystems can be calculated by taking the product of the partition functions for each subsystem. This can be seen by considering the Gibbs distribution for each subsystem and taking into account their statistical independence. The resulting partition function is equal to the trace of the exponential of the Hamiltonian for each subsystem multiplied together.
  • #1
George444fg
26
4
TL;DR Summary
Partition Function of a separable hamiltonian
I am trying to calculate the partition function of the system of two completely decoupled systems. Probability-wise, the decoupled nature means that the PDF is the product of the PDF of each subsystem. I just wanted to be sure that it would translate into:

$$
H = \sum_{k_i, s_i}e^{H_s(s_i)}e^{H_k(k_i)} = \sum_{k_i}(\sum_{s_i}e^{H_s(s_i)})e^{H_k(k_i)} = \sum_{s_i}e^{H_s(s_i)}\sum_{k_i}e^{H_k(k_i)} = Tr(e^{H_s(s_i)})*Tr(e^{H_k(k_i)})
$$

I know the question seems trivial, but I got a bit confused, and I would like to be 100% sure. Thank you for any help you can provide
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Your notation seems rather awkward (the "##H##" on the left-hand-side of your formula has nothing to do with the "##H##'s" in the exponents), but essentially yes - your expression is correct.

You can also see that you're right by considering, e.g., the Gibbs distribution for the subsystem ##n## (with the Hamiltonian ##H_n##) at the given temperature ##T## (##k_B## below is the Boltzmann constant):
$$ p_n(T) = \frac{e^{-H_n/k_B T}}{Z_n(T)} \rm{,}$$
where ##Z_n(T)## is the partition function for this subsystem,
$$ Z_n(T) = \text{Tr}\{e^{-H_n/k_B T}\} \rm{.}$$
Now, if you have two statistically independent subsystems ##s## and ##k##, the probability density of the total system ##s+k## is a product, as you've already noted:
$$p_{sk}(T) = p_s(T) \cdot p_k(T) \rm{.}$$
From this you immediately obtain that the partition function for the total ##s+k## system is ##Z_{sk}(T) = Z_s(T) \cdot Z_k(T)## - which is the result you got at the rightmost hand-side of your formula.
 

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
855
Replies
2
Views
790
Replies
7
Views
1K
  • Quantum Physics
Replies
9
Views
844
  • Introductory Physics Homework Help
Replies
2
Views
2K
Replies
1
Views
765
  • Thermodynamics
Replies
3
Views
890
Replies
1
Views
657
  • Advanced Physics Homework Help
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top