# How to estimate summations

#### daigo

##### Member
i.e.

$$\sum_{n = 0}^{\infty}\frac{1}{2^{n}} = \frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \frac{1}{2^{5}} + \frac{1}{2^{6}} + \cdots = ~1.99138889...$$

Is there a way you can know this solution is 2 without having to perform all of the calculations I did to find which number the sums are approaching? And is there a general method for questions like these to find the solution without having to perform a lot of calculations?

Staff member

#### CaptainBlack

##### Well-known member
i.e.

$$\sum_{n = 0}^{\infty}\frac{1}{2^{n}} = \frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \frac{1}{2^{5}} + \frac{1}{2^{6}} + \cdots = ~1.99138889...$$

Is there a way you can know this solution is 2 without having to perform all of the calculations I did to find which number the sums are approaching? And is there a general method for questions like these to find the solution without having to perform a lot of calculations?
There is no general method to determine the sum of a convergent series, it is a result of computability theory that almost all such series are not even computable. This one however is well behaved and its sum can be found using the method sugested by Ackbach

CB

Last edited: