How is 3-space curved without a fourth spatial dimension?

  • Thread starter Robert100
  • Start date
  • Tags
    Dimension
In summary, according to these authors, there is no contradiction in believing that our 3-dimensional space is curved, even though we don't need a fourth spatial dimension to do so. This is because there is intrinsic curvature in space, and this curvature does not depend on any embedding in a higher dimensional space.
  • #1
Robert100
85
0
When I was studying physics in college I learned two contradictory ways to understand Einstein's theory of general relativity (GR).

The most common way was to visualize our three-dimensional space as being distorted by mass. Anything with mass created a distortion in spacetime. Just as a bowling ball placed on a 2-D rubber sheet creates a curvature in a third spatial dimension, mass in our 3-D universe creates a curvature in fourth spatial dimension.

The second way I learned was identical to the above, but with the following bizarre provision: We don't need a fourth spatial dimension for the 3D universe to be curved into. When I asked how this could even be possible, I was told that the math doesn't require it, but this was hardly an answer.

Lately I have been searching for an explanation of how anyone could believe the second conception (our 3-space is curved without any higher space for it to be curved into!?), yet have found nothing beyond flat assertions that the math allows this to be so.

Here is an example of a useless non-explanation, from two otherwise reliable authors:

"This balloon analogy should not be stretched too far. From our point of view outside the balloon, the expansion of the curved two-dimensional rubber is possible only because it is embedded in three-dimensional space. Within the third dimension, the balloon has a center, and its surface expands into the surrounding air as it infl ates. One might conclude that the expansion of our three-dimensional space requires the presence of a fourth dimension. But in Einstein’s general theory of relativity, the foundation of modern cosmology, space is dynamic. It can expand, shrink and curve without being embedded in a higher-dimensional space."

"Misconceptions About the Big Bang" Tamara Davis and Charles Lineweaver, March 2005

I urge readers here to read this article, and others by these same authors. In all cases where they explain away misconceptions about cosmology, they do a good job. They provide graphs and pictures, they give analogies, and generally make themselves understood. But what they do here is to totally gloss over the issue, and just assert that the math says so.

Worse, I have seen the same non-answer from other people, who otherwise write well.

Can anyone tell me what is going on here? Do most/all cosmologists really agree that GR predicts that there is NOT a fourth spatial dimension? If so, can someone point me to a useful explanation of what this means?


Robert
 
Physics news on Phys.org
  • #2
Recommend some good nontechnical books

Robert100 said:
When I was studying physics in college I learned two contradictory ways to understand Einstein's theory of general relativity (GR).

The most common way was to visualize our three-dimensional space as being distorted by mass. Anything with mass created a distortion in spacetime. Just as a bowling ball placed on a 2-D rubber sheet creates a curvature in a third spatial dimension, mass in our 3-D universe creates a curvature in fourth spatial dimension.

The second way I learned was identical to the above, but with the following bizarre provision: We don't need a fourth spatial dimension for the 3D universe to be curved into. When I asked how this could even be possible, I was told that the math doesn't require it, but this was hardly an answer.

If you took a real physics course :-/ you must misremember some important details.

We model the setting for physics, called spacetime, as a four-dimensional manifold. According to Wheeler's slogan for the EFE, "matter tells spacetime how to curve; spacetime tells matter how to move".

Now, we can always "embed" any manifold as a kind of curved hypersurface in some higher dimensional manifold (although we typically require more than just one extra dimension for four-manifolds!). In fact, there are always infinitely many ways to do this. In each embedding, we can define and study an "extrinsic curvature", but this tells how the hypersurface bends in the bigger space, and is not an "intrinsic feature" of the geometry of the small space, because it changes if we consider a new embedding.

(Incidently, embeddings in homogeneous but nonflat higher dimensional manifolds are currently popular.)

In constrast, Gauss and Riemann showed that manifolds have intrinsic curvature. This curvature does not depend upon any embedding in a higher dimensional flat space, so it is an intrinsic description of the internal geometry.

Robert100 said:
Lately I have been searching for an explanation of how anyone could believe the second conception (our 3-space is curved without any higher space for it to be curved into!?), yet have found nothing beyond flat assertions that the math allows this to be so.

So you are unwilling/unable to just learn the math? Fair enough, but then you should accept what people tell you about what the math of curved manifolds says. Be this as it may, try the book by Sklar listed at http://math.ucr.edu/home/baez/RelWWW/HTML/reading.html#phil

Robert100 said:
Here is an example of a useless non-explanation, from two otherwise reliable authors:

"Misconceptions About the Big Bang" Tamara Davis and Charles Lineweaver, March 2005

Nice paper--- maybe after reading Sklar you'll appreciate it more.

Robert100 said:
I urge readers here to read this article, and others by these same authors. In all cases where they explain away misconceptions about cosmology, they do a good job. They provide graphs and pictures, they give analogies, and generally make themselves understood. But what they do here is to totally gloss over the issue, and just assert that the math says so.

Worse, I have seen the same non-answer from other people, who otherwise write well.

Again, are you insisting that this be explained to you without using any mathematical reasoning? If so, that could be a big part of the problem. Be this as it may, you might try the book by Jeffrey Weeks, The Shape of Space, which makes a real attempt to explain manifold theory (including issues of global structure) using lots and lots of excellent pictures.

Robert100 said:
Can anyone tell me what is going on here? Do most/all cosmologists really agree that GR predicts that there is NOT a fourth spatial dimension?

I take it you now appreciate that this question rests upon a basic misconception, which is probably why others you have asked apparently just gave you a funny look and walked away.
Robert[/QUOTE]
 
Last edited by a moderator:
  • #3
You know how to construct a cylinder from a square right? You identify one of the opposite sides, i.e. glue them up and form cylinder. Now of course by doing this you introduce a type of curvature.

But you can simply identify the sides topologically without really gluing them in 3 dimensional space. The geometry on this flat cylinder is the same as that on the "real cylinder" according to any flatlander who lives on them.

In other words, a cylinder is actually intrinsically flat: its (Gaussian) curvature is zero. This concept of curvature is what matters. The (scalar) curvature we introduced by gluing physically (by embedding in 3-space) is extrinsic.

And since we can only observe what is in the universe, it is the intrinsic curvature that we are interested in, and that is the information contains in the Riemann curvature tensor in GR formulation.
 

Related to How is 3-space curved without a fourth spatial dimension?

1. How can 3-space be curved if there are only three dimensions?

The concept of curvature in 3-space is based on the idea that space is not flat, but rather has a shape or curvature to it. This can be difficult to visualize because our everyday experience is in a flat, Euclidean space. However, just as a two-dimensional surface, such as a sphere, can be curved in three-dimensional space, a three-dimensional space can also be curved in a higher dimensional space.

2. What does it mean for space to be curved?

In simple terms, curvature in space means that the shortest distance between two points is not a straight line, but rather a curved path. This can be visualized by thinking about a curved surface, such as a saddle, where the shortest distance between two points on the surface is not a straight line. Similarly, in a curved 3-space, the shortest distance between two points may not be a straight line.

3. How does the curvature of space affect objects in it?

The curvature of space can affect the way objects move through space. In a flat, Euclidean space, objects will move in straight lines unless acted upon by an external force. In a curved 3-space, however, the curvature of space can cause objects to follow curved paths, even without the influence of an external force. This is known as the curvature of geodesics.

4. Can we observe the curvature of 3-space without a fourth spatial dimension?

Yes, we can observe the curvature of 3-space without a fourth spatial dimension. One way is through the phenomenon of gravity, which is described by Einstein's theory of general relativity. According to this theory, the curvature of space is related to the distribution of matter and energy in the universe. Another way to observe curvature in 3-space is through experiments conducted in the field of topology, which studies the properties of curved spaces.

5. How does the concept of a fourth spatial dimension explain the curvature of 3-space?

The concept of a fourth spatial dimension is not necessary to explain the curvature of 3-space. It is simply a mathematical tool used to help visualize and understand the concept of curvature in higher dimensional spaces. The curvature of 3-space can be described and studied without the need for a fourth spatial dimension.

Similar threads

  • Special and General Relativity
Replies
12
Views
1K
  • Special and General Relativity
Replies
30
Views
685
Replies
12
Views
2K
  • Special and General Relativity
Replies
32
Views
5K
  • Special and General Relativity
Replies
7
Views
2K
  • Other Physics Topics
Replies
20
Views
3K
  • Special and General Relativity
Replies
27
Views
4K
  • Special and General Relativity
Replies
2
Views
1K
  • Beyond the Standard Models
Replies
2
Views
2K
  • Special and General Relativity
Replies
14
Views
2K
Back
Top