- Thread starter
- #1

#### stephan2124

##### New member

- Mar 20, 2020

- 1

L -3e^{9t}+9 sin(9t)

L-3e^{9t}+L 9 sin (9t)

-3 Le^{9t}+9 L sin(9t)

-3 (1/s-9) +9 (9/(s^2+9^2))

-3 (1/s-9) +9 (9/(s^2+81))

into a math program

-3*(1/(s-9)+9*(9/s exp +81)

- Thread starter stephan2124
- Start date

- Thread starter
- #1

- Mar 20, 2020

- 1

L -3e^{9t}+9 sin(9t)

L-3e^{9t}+L 9 sin (9t)

-3 Le^{9t}+9 L sin(9t)

-3 (1/s-9) +9 (9/(s^2+9^2))

-3 (1/s-9) +9 (9/(s^2+81))

into a math program

-3*(1/(s-9)+9*(9/s exp +81)

- Jan 29, 2012

- 1,151

Yes, the Laplace transform of [tex]-3e^{9t}+ 9 sin(9t)[/tex] is -3 times the Laplace transform of [tex]e^{9t}[/tex] plus 9 times the Laplace transform if [tex]sin(9t)[/tex]. Yes, the Laplace transform of [tex]e^{9t}[/tex] is [tex]\frac{1}{s- 9}[/tex] and the Laplace transform of [tex]sin(9t)[/tex] is [tex]\frac{1}{s^2+ 9^2}= \frac{1}{s^2+ 81}[/tex] so the Laplace transform of

[tex]-3e^{9t}+ 9 sin(9t)[/tex] is [tex]\frac{-3}{s- 9}+ \frac{9}{s^2+ 81}[/tex].

Now, if your math program does not accept that, perhaps it wants the two fractions added: [tex]\frac{-3(s^2+ 81)}{(s- 9)(s^2+ 81)}+ \frac{9(s- 9)}{(s- 9)(s^2+ 81)}= \frac{-3s^2- 243}{(s- 9)(s^2+ 81)}+ \frac{9s- 81}{(s- 9)(s^2+ 81)}= \frac{-3s^2+ 9s- 324}{(s- 9)(s^2+ 81)}= \frac{-3s^2+ 9s- 324}{s^3- 9s^2+ 81s- 729}= -\frac{3s^2- 9s+ 324}{s^3- 9s^2+ 81s- 729}[/tex].

Any one of those is a correct answer.

Now, if your math program does not accept that, perhaps it wants the two fractions added: [tex]\frac{-3(s^2+ 81)}{(s- 9)(s^2+ 81)}+ \frac{9(s- 9)}{(s- 9)(s^2+ 81)}= \frac{-3s^2- 243}{(s- 9)(s^2+ 81)}+ \frac{9s- 81}{(s- 9)(s^2+ 81)}= \frac{-3s^2+ 9s- 324}{(s- 9)(s^2+ 81)}= \frac{-3s^2+ 9s- 324}{s^3- 9s^2+ 81s- 729}= -\frac{3s^2- 9s+ 324}{s^3- 9s^2+ 81s- 729}[/tex].

Any one of those is a correct answer.

Actually it's $\displaystyle \frac{9}{s^2 + 81} $.the Laplace transform of [tex]sin(9t)[/tex] is [tex]\frac{1}{s^2+ 9^2}= \frac{1}{s^2+ 81}[/tex]

so the Laplace transform of[tex]-3e^{9t}+ 9 sin(9t)[/tex] is [tex]\frac{-3}{s- 9}+ \frac{9}{s^2+ 81}[/tex].

Actually it's $\displaystyle -\frac{3}{s - 9} + \frac{81}{s^2 + 81}$.

To enter it in Weblearn you will need to write:

-3/(s - 9) + 81/(s^2 + 81)