- Thread starter
- #1

- Jun 22, 2012

- 2,918

====================================================================================

Determine the greatest common divisor of [TEX] a(x) = x^3 - 2 [/TEX] and [TEX] b(x) = x + 1 [/TEX] in [TEX] \mathbb{Q} [x] [/TEX]

and write it as a linear combination (in [TEX] \mathbb{Q} [x] [/TEX] ) of a(x) and b(x).

=====================================================================================

In working on this I applied the Division Algorithm to a(x) and b(x) resulting in

[TEX] x^3 - 2 = (x^2 - x + 1) (x+ 1) + (-3) [/TEX]

then

[TEX] (x + 1) = (1/3 x + 1/3) + 0 [/TEX]

Last non-zero remainder is -3

Therefore, gcd is -3

BUT!

This does not seem to be correct because -3 does not divide either a(x) and b(x)

Can someone please help?

Peter