Welcome to our community

Be a part of something great, join today!

Give a basis to get the specific matrix M

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
Hey!! :giggle:

We have the following linear maps \begin{align*}\phi_1:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}x+y\\ x-y\end{pmatrix} \\ \phi_2:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}-y\\ x\end{pmatrix} \\ \phi_3:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}y\\ 0\end{pmatrix} \end{align*}

1. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an upper triangular matrix.
2. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an diagonal matrix.

I have done the following:

Let $\mathcal{B}_i=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.

For question 1 :

- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1-y_1=0$. Then we have that $x_1=y_1$.
Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.


- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.


- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
This is already an upper triangular matrix, so we can take an arbitrary basis, e.g. $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.



For question 2 :

- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1-y_1=x_2+y_2=0$, then $x_1=y_1$ and $x_2=-y_2$. Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ -1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 0 \\ 0 & 2\end{pmatrix}\end{equation*} is a diagonal matrix.


- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1=y_2=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 0 \\ 0 & 1\end{pmatrix}\end{equation*} is a diagonal matrix.


It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $y_2=0$. Then we have for example such a basis $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\end{equation*} is a diagonal matrix.


Is everything correct? :unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
Hi mathmari !!

What is $M_B(\phi)$? 🤔

I would expect it to be the matrix of the transformation $\phi$ with respect to the basis $B$.
But if so, then we would have $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$. :oops:

Consider for instance the identity transformation $\text{id}$.
With respect to a basis $B$ it should be $M_B(\text{id})=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ shouldn't it? And not $(b_1\mid b_2)$? :unsure:
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
What is $M_B(\phi)$? 🤔

I would expect it to be the matrix of the transformation $\phi$ with respect to the basis $B$.
But if so, then we would have $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$. :oops:

Consider for instance the identity transformation $\text{id}$.
With respect to a basis $B$ it should be $M_B(\text{id})=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ shouldn't it? And not $(b_1\mid b_2)$? :unsure:
Ahh ok!

Yes, it is the matrix of the transformation.

So, what do we have to do? :unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
We can find a diagonal $M_B(\phi)$ by calculating the eigenvalues and corresponding eigenvectors.
If $\phi$ is diagonalizable, then the eigenvectors form a basis that satisfies the condition.
In that case we have also found an upper triangle matrix, since a diagonal matrix is upper triangular. 🤔
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
In general how is $M_B^B(\phi_a)$ for a matrix $a$, or $M_B^E(\text{id})$ or $M_E^B(\text{id})$ defined?


For example let $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$

Then is the following correct?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}

\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*}
For each $e_i$ we apply Gauss algorithm:

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ 0 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ -1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_1)=\begin{pmatrix}-\frac{1}{3}\\ \frac{5}{3} \\ \frac{1}{3}\end{pmatrix}\end{equation*}


\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ -2 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_2)=\begin{pmatrix}\frac{4}{3}\\ \frac{1}{3} \\ \frac{2}{3}\end{pmatrix}\end{equation*}


\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_3)=\begin{pmatrix}-1\\ \frac{2}{3} \\ -\frac{1}{3}\end{pmatrix}\end{equation*}


That means that \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\phi_a)=\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\end{equation*}



And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}


:unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
In general how is $M_B^B(\phi_a)$ for a matrix $a$, or $M_B^E(\text{id})$ or $M_E^B(\text{id})$ defined?
I usually get confused with the upper and lower indices, and I think some texts swap their meaning. o_O
Anyway, let me give one definition, which matches what you write afterwards.

$M_E^B(\phi)$ is the matrix such that when we multiply it with a vector with respect to the basis $B$, the result is the vector with respect to the basis $E$ mapped according to the transformation $\phi$.

So suppose that $\gamma_E(b_1)$ is the vector with respect to $E$ of the first basis vector $b_1$ of $B$.
Then $M_E^B(\phi)\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\phi(b_1))$. 🤔

If $\phi$ is the identity $\text{id}$, we get $M_E^B(\text{id})\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\text{id}(b_1))=\gamma_E(b_1)$.


And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}
I think something went wrong, because the result should be the identity matrix. :oops:

Also, it seems that $\phi_a$ and $\text{id}$ have been mixed up in a number of places. o_O
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
I usually get confused with the upper and lower indices, and I think some texts swap their meaning. o_O
Anyway, let me give one definition, which matches what you write afterwards.

$M_E^B(\phi)$ is the matrix such that when we multiply it with a vector with respect to the basis $B$, the result is the vector with respect to the basis $E$ mapped according to the transformation $\phi$.

So suppose that $\gamma_E(b_1)$ is the vector with respect to $E$ of the first basis vector $b_1$ of $B$.
Then $M_E^B(\phi)\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\phi(b_1))$. 🤔

If $\phi$ is the identity $\text{id}$, we get $M_E^B(\text{id})\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\text{id}(b_1))=\gamma_E(b_1)$.
So, what I have done in my previous post is not correct, is it? :unsure:


I think something went wrong, because the result should be the identity matrix. :oops:

Also, it seems that $\phi_a$ and $\text{id}$ have been mixed up in a number of places. o_O
Ahh... The matrix $a$ is $
\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ and I thought that the result is equal to teh matrix $a$, since $\phi_a(b_i)$ is the $i$-th column of $a$ ? Or isn't $M_B^B(\text{id})$ defined like that? :unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
So, what I have done in my previous post is not correct, is it?

Ahh... The matrix $a$ is $
\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ and I thought that the result is equal to teh matrix $a$, since $\phi_a(b_i)$ is the $i$-th column of $a$ ? Or isn't $M_B^B(\text{id})$ defined like that?
Now that you mention what $a$ is, it makes a bit more sense.

Either way, $M_B^B(\text{id})$ makes no reference to $a$ nor $\phi_a$ does it? So it can not be equal to anything that does refer to $\phi_a$. :oops:


For each $e_i$ we apply Gauss algorithm:

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ 0 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ -1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_1)=\begin{pmatrix}-\frac{1}{3}\\ \frac{5}{3} \\ \frac{1}{3}\end{pmatrix}\end{equation*}


\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ -2 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_2)=\begin{pmatrix}\frac{4}{3}\\ \frac{1}{3} \\ \frac{2}{3}\end{pmatrix}\end{equation*}


\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_3)=\begin{pmatrix}-1\\ \frac{2}{3} \\ -\frac{1}{3}\end{pmatrix}\end{equation*}
For the record, we can do the Gaussian elimination in one go.
That is, we can apply Gauss to $\begin{pmatrix}B\mid I\end{pmatrix}$ instead of $\begin{pmatrix}B\mid e_i\end{pmatrix}$ for each $i$ separately. 🤔

That means that \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\phi_a)=\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\end{equation*}
Shouldn't it be $\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})$ instead? :unsure:


And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}
This looks wrong. (Shake)
I believe we have $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})\ne\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )$ and $\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )\ne a$.
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
Now that you mention what $a$ is, it makes a bit more sense.

Either way, $M_B^B(\text{id})$ makes no reference to $a$ nor $\phi_a$ does it? So it can not be equal to anything that does refer to $\phi_a$. :oops:
Oh there is a typo... There it should be $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)$ (Tmi)
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
So to clarify :

We have $B=\{b_1, b_2, b_3\}$ with $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$ which is basis of $\mathbb{R}^3$.

Then to calculate $M_E^B(\text{id})$ and $M_B^E(\text{id})$ we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*}


Then suppose $a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ then to calculate $M_B^B(\phi_a)$ do we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}


:unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
So to clarify :

We have $B=\{b_1, b_2, b_3\}$ with $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$ which is basis of $\mathbb{R}^3$.

Then to calculate $M_E^B(\text{id})$ and $M_B^E(\text{id})$ we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*}
What are $\gamma_{\mathcal{E}}$ and $\gamma_{\mathcal{B}}$? 🤔

Then suppose $a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ then to calculate $M_B^B(\phi_a)$ do we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}
Can it be that we have $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(\phi_a)=a$ instead? 🤔
And $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(\phi_a)=\left (\gamma_{\mathcal{E}}(\phi_a(e_1))\mid \gamma_{\mathcal{E}}(\phi_a(e_2))\mid \gamma_{\mathcal{E}}(\phi_a(e_3))\right )$? 🤔

Perhaps we can back to this after we clarified what $\gamma_{\mathcal{E}}$ and $\gamma_{\mathcal{B}}$ are. o_O
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
$\gamma_B(v)$ is the vector of coefficients when we write the vector $v$ as a linear combination of the elements of the basis $B$.

For example $\gamma_B(e_i)=\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}$ with \begin{equation*}e_i=c_1b_1+c_2b_2+c_3b_3=c_1\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}+c_2\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}+c_3\begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}\end{equation*}
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
$\gamma_B(v)$ is the vector of coefficients when we write the vector $v$ as a linear combination of the elements of the basis $B$.

For example $\gamma_B(e_i)=\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}$ with \begin{equation*}e_i=c_1b_1+c_2b_2+c_3b_3=c_1\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}+c_2\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}+c_3\begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}\end{equation*}
Okay! :geek:

Let $V$ be our abstract vector space.
Let $\mathbb{R}^3_E$ be the space of column vectors with respect to basis $E$.
Let $\mathbb{R}^3_B$ be the space of column vectors with respect to basis $B$.
And let's assume that $\phi_a$ is the map $V\to V$ such that it corresponds to matrix multiplication with $a$ with respect to the standard basis $E$.

Then here's a diagram that shows the relevant relationships.

1612043175776.png

In particular we can deduce from it that:
$$M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$$
🤔
 
Last edited:

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
Okay! :geek:

Let $V$ be our abstract vector space.
Let $\mathbb{R}^3_E$ be the space of column vectors with respect to basis $E$.
Let $\mathbb{R}^3_B$ be the space of column vectors with respect to basis $B$.
And let's assume that $\phi_a$ is the map $V\to V$ such that it corresponds to matrix multiplication with $a$ with respect to the standard basis $E$.

Then here's a diagram that shows the relevant relationships.

View attachment 10951

In particular we can deduce from it that:
$$M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$$
🤔
Ahh ok! And are the matrices $M^E_B(\text{id}) $ and $ M^E_B(\text{id})^{-1}$ that I calculated above correct? :unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
Ahh ok! And are the matrices $M^E_B(\text{id}) $ and $ M^E_B(\text{id})^{-1}$ that I calculated above correct?
They look correct to me. (Nod)
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
That is what I'd expect yes. 🤔
Ok.. So with $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$ we have the following :

Let $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.

With $\phi_1$ :
\begin{align*}M_B(\phi_1)&=\begin{pmatrix}x_1 & x_2 \\ y_1 & y_2\end{pmatrix}^{-1}\cdot \begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}=\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}y_2 & -x_2 \\ -y_1 & x_1\end{pmatrix}\cdot \begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix} \\ & =\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}x_1y_2+y_1y_2 -x_1x_2+x_2y_1&x_2y_2+y_2^2-x_2^2+x_2y_2 \\ -x_1y_1-y_1^2+x_1^2-x_1y_1 & -x_2y_1-y_1y_2+x_1x_2-x_1y_2\end{pmatrix} \\ & =\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}x_1y_2+y_1y_2 -x_1x_2+x_2y_1& 2x_2y_2+y_2^2-x_2^2 \\ -2x_1y_1-y_1^2+x_1^2 & -x_2y_1-y_1y_2+x_1x_2-x_1y_2\end{pmatrix}\end{align*}
Now we have to solve a system such that this matrix is an upper triangular.

Is that way correct? Or is there an other approach? :unsure:
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
Yes, that looks correct. (Nod)
However, we do not have to solve the entire system. It suffices if the bottom left matrix entry is $0$.
That is, we only needed to find $-2x_1 y_1 -y_1^2+x_1^2$, and we need to find $x_1$ and $y_1$ such that it is $0$. 🤔

Another approach.
Let $U=(u_{ij})=M_B(\phi)$ be the desired upper triangular matrix.
Let $b_1$ be the first vector in the desired basis.
Then $U\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}u_{11}\\0\end{pmatrix} = u_{11}\begin{pmatrix}1\\0\end{pmatrix}$.
In other words, $u_{11}$ must be an eigenvalue of $\phi$ and $b_1$ must be the corresponding eigenvector. 🤔
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
Another approach.
Let $U=(u_{ij})=M_B(\phi)$ be the desired upper triangular matrix.
Let $b_1$ be the first vector in the desired basis.
Then $U\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}u_{11}\\0\end{pmatrix} = u_{11}\begin{pmatrix}1\\0\end{pmatrix}$.
In other words, $u_{11}$ must be an eigenvalue of $\phi$ and $b_1$ must be the corresponding eigenvector. 🤔
So you take as $b_1$ the vector $\begin{pmatrix}1\\0\end{pmatrix} $ ?
 

Klaas van Aarsen

MHB Seeker
Staff member
Mar 5, 2012
9,591
So you take as $b_1$ the vector $\begin{pmatrix}1\\0\end{pmatrix} $ ?
Not exactly. (Shake)

We consider $b_1$ an as yet unknown vector.
The representation of that vector with respect to the basis $B$ is $\gamma_B(b_1)=\begin{pmatrix}1\\0\end{pmatrix}$.
That is, $1\cdot b_1 + 0\cdot b_2$. (Sweating)
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
They look correct to me. (Nod)
Using the equality $M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$ we get
\begin{align*}M^B_B(\phi_a)&=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1} \\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}^{-1}\\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix} \\ & = \begin{pmatrix}\frac{2}{9} & -\frac{1}{9} & \frac{11}{9} \\- \frac{2}{9} & \frac{13}{9} & -\frac{8}{9} \\ 0 & \frac{1}{3} & \frac{1}{3}\end{pmatrix} \end{align*}

This must be equal to \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\gamma_{\mathcal{B}}\left (\phi_a(b_1)\right )\mid \gamma_{\mathcal{B}}\left (\phi_a(b_2)\right )\mid \gamma_{\mathcal{B}}\left (\phi_a(b_3)\right )\right )\end{equation*} or not?


I got an other result :

We have that \begin{align*}&\phi_a(b_1)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ & \phi_a(b_2)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ & \phi_a(b_3)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}=\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \end{align*}

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 1\end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 1 & 0 & 1\end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 1\end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -3 & 3\end{matrix}\end{pmatrix} \end{align*}

For $\gamma_B(\phi_a(b_1))$ we get the equations \begin{align*}c_1+c_2-c_3&= 1 \\ -c_2+2c_3&=0 \\ -3c_3&= 0\end{align*} So we get $\gamma_B(\phi_a(b_1))=\begin{pmatrix}1\\ 0 \\ 0\end{pmatrix}$.


For $\gamma_B(\phi_a(b_2))$ we get the equations \begin{align*}c_1+c_2-c_3&=-1 \\ -c_2+2c_3&=\ 2 \\ -3c_3&=-3\end{align*} So we get $\gamma_B(\phi_a(b_2))=\begin{pmatrix}0\\ 1 \\ 1\end{pmatrix}$.


For $\gamma_B(\phi_a(b_3))$ we get the equations \begin{align*}c_1+c_2-c_3&= \ 0 \\ -c_2+2c_3&=-1 \\ -3c_3&= \ 3\end{align*} So we get $\gamma_B(\phi_a(b_3))=\begin{pmatrix}4\\ -4 \\ -1\end{pmatrix}$.


Have I done something wrong or have I understood that wrong? :unsure:
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
Not exactly. (Shake)

We consider $b_1$ an as yet unknown vector.
The representation of that vector with respect to the basis $B$ is $\gamma_B(b_1)=\begin{pmatrix}1\\0\end{pmatrix}$.
That is, $1\cdot b_1 + 0\cdot b_2$. (Sweating)
So $\mathcal{M}_{\mathcal{B}_1}(\phi_1)$ is a diagonal matrix and so also an upper triangular matrix if it is of the form $\begin{pmatrix}u_{11} & 0 \\ 0 & u_{22}\end{pmatrix}$.

Then we get \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)\gamma_{\mathcal{B}_1}(b_1)=\begin{pmatrix}u_{11} \\ 0\end{pmatrix}=u_{11}\begin{pmatrix}1 \\ 0\end{pmatrix}=u_{11}\gamma_{\mathcal{B}_1}(b_1)\end{equation*}
So $u_{11}$ is an eigenvalue of $\phi$ and $b_1$ the corresponding eigenvector.

We have that \begin{equation*}\phi \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}
So $u_{11}=\sqrt{2}$ and $b_1=\begin{pmatrix}1+\sqrt{2} \\ 1\end{pmatrix}$.

We also have that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)\gamma_{\mathcal{B}_1}(b_2)=\begin{pmatrix}0 \\ u_{22}\end{pmatrix}=u_{22}\begin{pmatrix}0 \\ 1\end{pmatrix}=u_{22}\gamma_{\mathcal{B}_1}(b_2)\end{equation*}
So $u_{22}$ is an eigenvalue of $\phi$ and $b_1$ the corresponding eigenvector.
Then $u_{22}=-\sqrt{2}$ and $b_2=\begin{pmatrix}1-\sqrt{2} \\ 1\end{pmatrix}$.


Is that correct? Or can we not consider both cases (upper tridiagonal and diagonal) together?


:unsure:
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
For map $\phi_2$ we cannot do that like that :
\begin{equation*}\phi_2 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}

There are only complex eigenvalues :unsure:
 

mathmari

Well-known member
MHB Site Helper
Apr 14, 2013
4,713
For the last map we have:
\begin{equation*}\phi_3 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}
So there is only one eigenvalue $u_{11}=0$ and $b_1=\begin{pmatrix}1 \\ 0\end{pmatrix}$.

:unsure: