Feb 21, 2019 Thread starter #1 Julio Member Feb 14, 2014 71 Show that if $S=(x,y,h(x,y)): (x,y)\in U$ where $h: U\to \mathbb{R}$ is a smooth function then $K=\dfrac{\text{det}\, \text{Hess}\, h}{(1+\left| \nabla h \right|^2)^2}.$ Hello, we can use that $K=\dfrac{eg-f^2}{EG-F^2}$. Yes?

Show that if $S=(x,y,h(x,y)): (x,y)\in U$ where $h: U\to \mathbb{R}$ is a smooth function then $K=\dfrac{\text{det}\, \text{Hess}\, h}{(1+\left| \nabla h \right|^2)^2}.$ Hello, we can use that $K=\dfrac{eg-f^2}{EG-F^2}$. Yes?

Feb 22, 2019 Moderator #2 Euge MHB Global Moderator Staff member Jun 20, 2014 1,890 Hi Julio , Yes, you can (and, in fact, should) use that formula to compute that Gaussian curvature.