Welcome to our community

Be a part of something great, join today!

Functional equation

Alexmahone

Active member
Jan 26, 2012
268
Suppose $f(x)$ is continuous for all $x$ and $f(a+b)=f(a)+f(b)$ for all $a$ and $b$. Prove that $f(x)=Cx$, where $C=f(1)$.

I have shown that $f(x)=Cx$ for all rational numbers. How do I use the continuity of $f$ to show it is true for all $x$?
 

Krizalid

Active member
Feb 9, 2012
118

Alexmahone

Active member
Jan 26, 2012
268
Having this, remember that rationals are dense in $\mathbb R.$
Intuitively, I can see that it must be true but I'm having trouble proving it.
 

Plato

Well-known member
MHB Math Helper
Jan 27, 2012
196
Intuitively, I can see that it must be true but I'm having trouble proving it.
Every real number is the limit of a sequence of rational numbers.
The function is continuous. What continuity and convergent sequences?
 

Alexmahone

Active member
Jan 26, 2012
268
Every real number is the limit of a sequence of rational numbers.
The function is continuous. What continuity and convergent sequences?
Got it. Thanks!
 

HallsofIvy

Well-known member
MHB Math Helper
Jan 29, 2012
1,151
By the way, if you do not include the requirement that the function be continuous, all f are either of the form f(x)= cx or the graph of y= f(x) is dense in the plane.