- Thread starter
- #1
Take the Fourier transform with respect to $x$ then you simply treat $t$ as a constant.インテグラルキラー;437 said:I need to apply Fourier transform to solve the following: $t^2u_t-u_x=g(x),$ $x\in\mathbb R,$ $t>0$ and $u(x,1)=0,$ $x\in\mathbb R.$
How do I apply the Fourier transform for $t^2u_t$ ?
Thanks!