- Thread starter
- #1

- Thread starter Markov
- Start date

- Thread starter
- #1

- Jan 26, 2012

- 236

Take the Fourier transform with respect to $x$ then you simply treat $t$ as a constant.インテグラルキラー;437 said:I need to apply Fourier transform to solve the following: $t^2u_t-u_x=g(x),$ $x\in\mathbb R,$ $t>0$ and $u(x,1)=0,$ $x\in\mathbb R.$

How do I apply the Fourier transform for $t^2u_t$ ?

Thanks!

$$ \int \limits_{-\infty}^{\infty} t^2 \frac{\partial u}{\partial t} e^{-i\omega x} dx = t^2 \frac{\partial }{\partial t}\int \limits_{-\infty}^{\infty} u(x,t) e^{-i\omega x} dx = t^2 \frac{\partial U}{\partial t}$$

Here we differenciated under the integral sign, and $U(\omega , t)$ is the notation for the Fourier transform of $u(x,t)$ with respect to $x$.

- Thread starter
- #3

- Thread starter
- #4