Fourier transform of ##e^{-a |t|}\cos{(bt)}##

In summary, the first equation is simplified by reversing the order of the integrals, and the second equation is simplified by taking the derivative with respect to time of the real part of the first equation.
  • #1
schniefen
178
4
Homework Statement
Find the Fourier transform of ##f(t)=e^{-a |t|}\cos{(bt)}##, where ##a## and ##b## are positive constants.
Relevant Equations
I use the convention ##\tilde{f}(\omega)= \int_{-\infty}^{\infty}f(t)e^{-i\omega t} \mathrm{d}t##. Also, I can use the fact that ##f(t)=-i\Theta(t)e^{-i\omega_0 t-\gamma t}## has Fourier transform ##\tilde{f}(\omega)=\frac{1}{\omega-\omega_0+i\gamma}##, although this is not explicitly hinted at.
First,

##\tilde{f}(\omega)=\int_{-\infty}^{\infty}e^{a|t|}\cos(bt)e^{-i\omega t} \mathrm{d}t##​

We can get rid of the absolute value by splitting the integral up

##\int_{-\infty}^{0}e^{at}\cos(bt)e^{-i\omega t} \mathrm{d}t+ \int_{0}^{\infty}e^{-at}\cos(bt)e^{-i\omega t} \mathrm{d}t##
Using ##\cos(x)=\frac12(e^{ix}+e^{-ix})##, the first integral reduces to

##\frac12\int_{-\infty}^{0}e^{at}(e^{ibt}+e^{-ibt})e^{-i\omega t}\mathrm{d}t=\frac12\int_{-\infty}^{0}e^{t(a+i(b-\omega))}\mathrm{d}t+\frac12\int_{-\infty}^{0}e^{t(a+i(-b-\omega))}\mathrm{d}t ##​

My strategy then is to rewrite the two integrands on the form ##-i\Theta(t)e^{-i\omega_0 t-\gamma t}## and use the known formula, as given under Relevant equations. Is this an approach you would have taken?
 
Physics news on Phys.org
  • #2
I think you are completely justified in carrying out the integration just as you would if you were to integrate ## \int e^{at} \ dt ##, without resorting to a formula for the F.T. Consider the Euler formula ## e^{ix}=\cos{x}+i \sin{x} ## for the details for making the integration valid when complex numbers are involved. Edit: e.g. You can use the complex numbers to do the integration, and then verify that it gives the correct result for ## \int e^{-at} \cos(bt) \, dt ## by taking the derivative of the real part of the result you get for ## \int e^{-at} e^{ibt} \, dt ##, and see that you do indeed get ## e^{-at} \cos(bt) ##.

See also https://www.physicsforums.com/threa...le-of-emitted-radiation.1048791/#post-6839518
for a recent homework posting that is somewhat related.
 
Last edited:
  • Like
Likes schniefen
  • #3
schniefen said:
##\frac12\int_{-\infty}^{0}e^{at}(e^{ibt}+e^{-ibt})e^{-i\omega t}\mathrm{d}t=\frac12\int_{-\infty}^{0}e^{t(a+i(b-\omega))}\mathrm{d}t+\frac12\int_{-\infty}^{0}e^{t(a+i(-b-\omega))}\mathrm{d}t ##

My strategy then is to rewrite the two integrands on the form ##-i\Theta(t)e^{-i\omega_0 t-\gamma t}## and use the known formula, as given under Relevant equations. Is this an approach you would have taken?
Starting from two integrals in the last line, change intgral variables from ##t## to ##-t## so that integrand become ##[0,+\infty)##.
Then you may write it
[tex]\int_0^{+\infty} g_k(t)dt = \int_{-\infty}^{+\infty} g_k(t)\theta (t) dt[/tex]
where
[tex]g_1(t)=e^{-ta-i(b-\omega)t}[/tex]
[tex]g_2(t)=e^{-ta-i(-b-\omega)t}[/tex]
so that you may make use of what you prepared.
 
  • Like
Likes schniefen

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
801
  • Calculus and Beyond Homework Help
Replies
3
Views
782
  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
2K
  • Calculus and Beyond Homework Help
Replies
6
Views
2K
  • Calculus and Beyond Homework Help
Replies
1
Views
375
  • Calculus and Beyond Homework Help
Replies
31
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
215
  • Calculus and Beyond Homework Help
Replies
16
Views
596
  • Calculus and Beyond Homework Help
Replies
3
Views
447
Back
Top