Finding Maximum Height of a Projectile

In summary, in this conversation, the speakers discuss a problem involving a basketball player throwing a ball at an angle and trying to determine the maximum height the ball reaches. They also mention a related problem where they need to calculate the initial velocity needed for the ball to make it into the basket. One speaker provides an equation for the trajectory of the ball and suggests setting up a coordinate system to solve for the initial velocity. The other speaker clarifies the notation used in the equation.
  • #1
AnTiFreeze3
246
9

Homework Statement



A basketball player is awarded free-throws. The center of the basket is [itex]4.21m[/itex] from the foul line and [itex]3.05m[/itex] from the ground. On the first free throw he throws the ball at an angle of 35 degrees above the horizontal with a speed of [itex]v_0 = 4.88 m/s[/itex]. The ball is released [itex]1.83m[/itex] from the floor. What is the maximum height reached by the ball?

Homework Equations



[itex]x = x_0 + v_0 t + (1/2) a t^2[/itex]
[itex]v^2 = v_0^2 + 2 a \Delta x[/itex]
[itex]v = v_0 + a t[/itex]
[itex]v_y^2 = v_y_o^2 + 2gh[/itex]

The Attempt at a Solution



Since we were given both [itex]v_x[/itex] and [itex]v_y[/itex], we wanted to find the distance straight from the release point of the ball to the center of the rim.

[itex]3.05m - 1.83m = 1.22m[/itex], which is height from the player's release point to the center of the rim.

Then, [itex]cosθ = {1.22}/{x}[/itex]

Therefore, the distance is [itex]5.20m[/itex]

(This information was only relevant for a later part of the question)

Then,

[itex]v_y^2 = v_yo^2 + 2gh[/itex] where 'h' is height, which is what we needed to solve for.

Solving for [itex]h[/itex], we find that

[itex]h={-v_yo}/{2g}[/itex]. Then,

[itex]h={-(4.88 sin35)^2}/{2(-9.8m/s^2)} ≈ 0.4m[/itex]

Adding [itex]0.4m[/itex] to the basketball's original height of [itex]1.83m[/itex], and you get the ball's maximum height to be [itex]2.23m[/itex] above the ground.

There is no soution for me to verify this answer with, so I would appreciate anyone telling me where I messed up, or in the less likely scenario, that I got the answer correct.
 
Last edited:
Physics news on Phys.org
  • #2
I don't see any error. This maximum height falls short of the height of the basket.
 
  • #3
CAF123 said:
I don't see any error. This maximum height falls short of the height of the basket.

Thanks for the response! A friend and I were working out some challenge problems (not much of a challenge, to be honest), but we have no answer key.

The ball falling short of the basket actually works out for the next problem, which wants us to figure out at what velocity he needs to shoot the basketball in order to make it into the basket.

As a side note, I apologize for any botched usage of LaTeX. Hopefully it didn't make this too painful to read.
 
  • #4
AnTiFreeze3 said:
Thanks for the response! A friend and I were working out some challenge problems (not much of a challenge, to be honest), but we have no answer key.

The ball falling short of the basket actually works out for the next problem, which wants us to figure out at what velocity he needs to shoot the basketball in order to make it into the basket.

As a side note, I apologize for any botched usage of LaTeX. Hopefully it didn't make this too painful to read.

About your LaTeX. If you want to write [itex]v_{y_0}[/itex], then you should write v_{y_0}. So be sure to enclode y_0 in brackets. Just writing v_y_0 will be an error!
 
  • #5
AnTiFreeze3 said:
Thanks for the response! A friend and I were working out some challenge problems (not much of a challenge, to be honest), but we have no answer key.

The ball falling short of the basket actually works out for the next problem, which wants us to figure out at what velocity he needs to shoot the basketball in order to make it into the basket.

As a side note, I apologize for any botched usage of LaTeX. Hopefully it didn't make this too painful to read.
Are you needing help with this question? Using the standard kinematic relations; [tex] s_y = v_{oy}t - \frac{1}{2}gt^2 [/tex] and [itex] t = \frac{s_x}{v_{ox}}, [/itex] you can derive the well known trajectory equation; [tex] s_y = s_x\tan\theta - \frac{gs_x^2}{2v_o^2\,\cos^2\theta}. [/tex]
Set up a suitable coordinate system and plug into this equation the coordinates of the basket net and simply solve for [itex] v_o. [/itex]
 
  • #6
CAF123 said:
] you can derive the well known trajectory equation; [tex] s_y = s_x\tan\theta - \frac{gs_x^2}{2v_o^2\,\cos^2\theta}. [/tex]
Set up a suitable coordinate system and plug into this equation the coordinates of the basket net and simply solve for [itex] v_o. [/itex]

I'm a little confused with this equation.

Take a problem that I have to solve (which is very similar to this one) which asks for the initial velocity in which the basketball needs to be shot in order for the player to make the shot.

Now, when I isolate [itex]v_o^2[/itex], I get: [tex]v_o^2=\frac{S_xtanθ-gs_x^2}{S_y2cos^2θ}[/tex]

Assuming that this equation is correct, I would need to know both the speeds of the x-axis, and the speed of the y-axis ([itex]S_x^2[/itex] and [itex]S_y^2[/itex]), in which case I wouldn't even need to use your derived equation, considering that I would then know both of the components of the resultant vector of [itex]v_o^2[/itex], which I could use to find that vector.

I'm mainly having difficulty figuring out what this equation is useful for. (Not that I don't appreciate you sharing it with me).
 
  • #7
Maybe my notation is a bit confusing. [itex] s_x [/itex] and [itex] s_y [/itex] here are like x and y. So the point [itex] (s_x , s_y) [/itex] represents some point on the trajectory. Setting up a coordinate system with the origin at the point of launch, you know the height of the basket net relative to your coordinate system [itex] (s_y) [/itex]and it's horizontal distance [itex] (s_x)[/itex].Then your only variable is [itex] v_o [/itex] in the trajectory equation.
Just a quick remark: this is assuming you want to know [itex] v_o [/itex] at the given angle.
 
  • #8
CAF123 said:
Maybe my notation is a bit confusing. [itex] s_x [/itex] and [itex] s_y [/itex] here are like x and y. So the point [itex] (s_x , s_y) [/itex] represents some point on the trajectory. Setting up a coordinate system with the origin at the point of launch, you know the height of the basket net relative to your coordinate system [itex] (s_y) [/itex]and it's horizontal distance [itex] (s_x)[/itex].Then your only variable is [itex] v_o [/itex] in the trajectory equation.
Just a quick remark: this is assuming you want to know [itex] v_o [/itex] at the given angle.

Oh alright, that makes a lot more sense. Thanks!
 
  • #9
I don't mean to interject -- but I was wondering about the original post, if that is introductory physics what I am doing is like pre k physics? I don't want to steal any shine or more attention from the original question. Please contact me or quote me or something if you want to. What am I doing it seems like I am wasting my time trying to understand the material but if I don't start from page 1 where do you start?
 
  • #10
pbody said:
I don't mean to interject -- but I was wondering about the original post, if that is introductory physics what I am doing is like pre k physics? I don't want to steal any shine or more attention from the original question. Please contact me or quote me or something if you want to. What am I doing it seems like I am wasting my time trying to understand the material but if I don't start from page 1 where do you start?

I'm in AP Physics, so the material might be a little more advanced than what you would see in a regular physics class.

Not only that, but the question that I posted here is a "challenge" question that our teacher offered. None of the questions on the test were as hard as the challenge problems, so what you are seeing here is honestly as advanced as our teacher could make the questions (while still giving us a realistic chance of solving them).
 

Related to Finding Maximum Height of a Projectile

1. How do you calculate the maximum height of a projectile?

The maximum height of a projectile can be calculated using the equation: h = (v2 * sin2θ) / (2 * g), where h is the maximum height, v is the initial velocity of the projectile, θ is the angle of launch, and g is the acceleration due to gravity (9.8 m/s2).

2. Can the maximum height of a projectile be higher than the initial height?

Yes, the maximum height of a projectile can be higher than the initial height if the projectile is launched at an angle greater than 45 degrees. This is because the maximum height is determined by the vertical component of the initial velocity and is not affected by the initial height.

3. How does air resistance affect the maximum height of a projectile?

Air resistance can decrease the maximum height of a projectile by slowing down its velocity and reducing the time it spends in the air. This is especially significant for projectiles with a large surface area, such as a feather or a parachute, as they experience more air resistance compared to a smaller and denser object.

4. Can the maximum height of a projectile be negative?

No, the maximum height of a projectile cannot be negative as it represents the highest point that the projectile reaches in its trajectory. If the projectile is launched from a height of 0, the maximum height will also be 0.

5. How does changing the initial velocity or angle of launch affect the maximum height of a projectile?

Changing the initial velocity affects the maximum height of a projectile by directly influencing the vertical component of the initial velocity. A higher initial velocity will result in a higher maximum height, while a lower initial velocity will result in a lower maximum height. Similarly, changing the angle of launch also affects the maximum height as a higher launch angle will result in a higher maximum height, while a lower launch angle will result in a lower maximum height.

Similar threads

  • Introductory Physics Homework Help
Replies
21
Views
2K
  • Introductory Physics Homework Help
Replies
14
Views
3K
  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
5K
  • Introductory Physics Homework Help
Replies
4
Views
2K
Replies
6
Views
5K
  • Introductory Physics Homework Help
Replies
13
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
1K
Back
Top