- Thread starter
- #1

#### DigitalComputer

##### New member

- Feb 10, 2012

- 5

$$ \int_0^1 (f(x)-g(x))dx$$

- Thread starter DigitalComputer
- Start date

- Thread starter
- #1

- Feb 10, 2012

- 5

$$ \int_0^1 (f(x)-g(x))dx$$

- Jan 27, 2012

- 95

$\displaystyle g'(x)=-\frac{xf(x)}{x^2} =-\frac{f(x)}{x}$.

or $f(x)=-xg(x)$ ...(1)

$\displaystyle I = \int_{0}^{1}(f(x)-g(x))dx = \int_0^1f(x)dx-\int_0^1g(x)dx$

Use integration by parts on the second integral:

$\displaystyle I = \int_0^1f(x)dx -(xg(x))_0^1 + \int_0^1 xg'(x) dx$

by (1) we have

$\displaystyle I= \int_0^1f(x)dx - \int_0^1f(x)dx -g(1) = -g(1) = -\int_{1}^{1}\frac{1}{t}f\left( \frac{1}{t}\right)dt $

$=0$

- Admin
- #3