- Thread starter
- #1
karush
Well-known member
- Jan 31, 2012
- 2,817
(a)
Let \(\displaystyle u=\left[ \begin{array}{c} 2 \\ 3 \\-1 \end{array} \right] \) and \(\displaystyle w=\left[ \begin{array}{c} 3 \\ -1 \\p \end{array} \right] \)
Given that u is perpendicular to \(\displaystyle w\), find the value of \(\displaystyle p\)
so by Dot Product \(\displaystyle u \bullet w = 0\) then \(\displaystyle u \perp w\)
using TI-Nspire solve(dotP(u,w)=0,p) \(\displaystyle p=3\)
(b)
Let \(\displaystyle v=\left[ \begin{array}{c} 1 \\ q \\5 \end{array} \right] \) Given that \(\displaystyle |v|=\sqrt{42}\) , find the possible values of \(\displaystyle q\)
does this mean
\(\displaystyle |\sqrt{1^2+q^2+5^2}|=\sqrt{42}\) if so \(\displaystyle q=\pm 4\)
Let \(\displaystyle u=\left[ \begin{array}{c} 2 \\ 3 \\-1 \end{array} \right] \) and \(\displaystyle w=\left[ \begin{array}{c} 3 \\ -1 \\p \end{array} \right] \)
Given that u is perpendicular to \(\displaystyle w\), find the value of \(\displaystyle p\)
so by Dot Product \(\displaystyle u \bullet w = 0\) then \(\displaystyle u \perp w\)
using TI-Nspire solve(dotP(u,w)=0,p) \(\displaystyle p=3\)
(b)
Let \(\displaystyle v=\left[ \begin{array}{c} 1 \\ q \\5 \end{array} \right] \) Given that \(\displaystyle |v|=\sqrt{42}\) , find the possible values of \(\displaystyle q\)
does this mean
\(\displaystyle |\sqrt{1^2+q^2+5^2}|=\sqrt{42}\) if so \(\displaystyle q=\pm 4\)