- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,802
Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.
Aww...that is a fabulous way to tackle the problem! Bravo, MarkFL!My solution:
We are given to evaluate:
\(\displaystyle S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]\)
Using the identity:
\(\displaystyle \tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)\)
we may write:
\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]\)
Now, using the fact that:
\(\displaystyle k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}\)
and the identity:
\(\displaystyle \cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}\)
We may now write:
\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]\)
This is a telescoping series, hence:
\(\displaystyle S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)\)
Using the identity:
\(\displaystyle \tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}\)
We may also write:
\(\displaystyle S_n=\tan^{-1}(n+1)\)
And so we have found:
\(\displaystyle \sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)\)
Thanks for your input, Random Variable!A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$
where $ak+b >0$