- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,681

Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.

- Thread starter anemone
- Start date

- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,681

Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.

- Admin
- #2

\(\displaystyle S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]\)

Using the identity:

\(\displaystyle \tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)\)

we may write:

\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]\)

Now, using the fact that:

\(\displaystyle k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}\)

and the identity:

\(\displaystyle \cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}\)

We may now write:

\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]\)

This is a telescoping series, hence:

\(\displaystyle S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)\)

Using the identity:

\(\displaystyle \tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}\)

We may also write:

\(\displaystyle S_n=\tan^{-1}(n+1)\)

And so we have found:

\(\displaystyle \sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)\)

- Thread starter
- Admin
- #3

- Feb 14, 2012

- 3,681

Aww...that is a fabulous way to tackle the problem! Bravo,

\(\displaystyle S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]\)

Using the identity:

\(\displaystyle \tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)\)

we may write:

\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]\)

Now, using the fact that:

\(\displaystyle k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}\)

and the identity:

\(\displaystyle \cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}\)

We may now write:

\(\displaystyle S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]\)

This is a telescoping series, hence:

\(\displaystyle S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)\)

Using the identity:

\(\displaystyle \tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}\)

We may also write:

\(\displaystyle S_n=\tan^{-1}(n+1)\)

And so we have found:

\(\displaystyle \sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)\)

- Jan 31, 2012

- 253

where $ak+b >0$

- Thread starter
- Admin
- #5

- Feb 14, 2012

- 3,681

Thanks for your input,

where $ak+b >0$