Nov 11, 2020 Thread starter Admin #1 anemone MHB POTW Director Staff member Feb 14, 2012 3,812 Determine the minimum value of $a^2+b^2$ when $(a,\,b)$ traverses all the pairs of real numbers for which the equation $x^4+ax^3+bx^2+ax+1=0$ has at least one real root.
Determine the minimum value of $a^2+b^2$ when $(a,\,b)$ traverses all the pairs of real numbers for which the equation $x^4+ax^3+bx^2+ax+1=0$ has at least one real root.
Nov 12, 2020 #2 S SquareOne New member Oct 10, 2020 3 Here's my attempt at a solution. Spoiler: My Solution Since \( x^{4} +ax^{3}+bx^{2}+ax+1 = 0 \), then we can assume that \( x \neq 0 \). Dividing by \( x^{2} \) yields: \( x^{2} + ax + \frac{a}{x} + b + \frac{1}{x^{2}} = 0 \) Rearrange terms \( x^{2} + \frac{1}{x^{2}} + ax + \frac{a}{x} + b = 0 \) Add \( 2 \) and Subtract \( 2 \) \( \left ( x^{2} + 2 + \frac{1}{x^{2}} \right ) + \left ( ax + \frac{a}{x} \right ) + b - 2 = 0 \) Factor each set of parentheses \( \left ( x + \frac{1}{x} \right )^{2} + a \left ( x + \frac{1}{x} \right ) + b - 2 = 0 \) Let \( v = x + \frac{1}{x} \), then we have \( v^{2} + av + b - 2 = 0 \). Use the quadratic formula in attempt to solve for \( v \): \( v = \frac{ (-a) \pm \sqrt{(-a)^{2}-4(1)(b - 2)} }{2(1)} \) Simplify \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) Recall that \( v=x + \frac{1}{x} \), then multiplying by \( x \) yields: \( vx = x^{2} + 1 \) Subtract \( vx \) from both sides \( x^{2} - vx + 1 = 0 \) In order for this to have "at least one real root", then the discriminant \( \Delta \geq 0 \): \( (-v)^{2} - 4(1)(1) \geq 0 \) Simplify \( v^{2} - 4 \geq 0 \) Add \( 4 \) to both sides \( v^{2} \geq 4 \) Since \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) and \( v^{2} \geq 4 \), then: \( \left ( \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \right )^{2} \geq 4 \) Simplify \( \frac{ \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} }{4} \geq 4 \) Multiply by \( 4 \) \( \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} \geq 16 \) Expand the left side \( a^{2} \pm 2a \sqrt{a^{2}-4b + 8} + a^{2}-4b + 8 \geq 16 \) Combine like terms \( 2a^{2} \pm 2a \sqrt{a^{2}-4b + 8} - 4b + 8 \geq 16 \) Divide both sides by \( 2 \) \( a^{2} \pm a \sqrt{a^{2}-4b + 8} - 2b + 4 \geq 8 \) Isolate the square root term \( \pm a \sqrt{a^{2}-4b + 8} \geq 8 - a^{2} + 2b - 4 \) Combine like terms \( \pm a \sqrt{a^{2}-4b + 8} \geq 4 - a^{2} + 2b \) Square both sides \( a^{2} \left ( a^{2}-4b + 8 \right ) \geq \left ( 4 - a^{2} + 2b \right )^{2} \) Expand both sides \( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 4a^{2} + 8b - 4a^{2} + a^{4} - 2a^{2}b + 8b - 2a^{2}b +4b^{2} \) Combine like terms \( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 8a^{2} + 16b + a^{4} - 4a^{2}b + 4b^{2} \) Simplify/Cancel out terms \( 8a^{2} \geq 16 - 8a^{2} + 16b + 4b^{2} \) add \( 8a^{2} \) to both sides \( 16a^{2} \geq 16 + 16b + 4b^{2} \) Divide by \( 4 \) on both sides \( 4a^{2} \geq 4 + 4b + b^{2} \) Add \( 4b^{2} \) to both sides and rewrite \( 4a^{2} + 4b^{2} \geq 5b^{2} + 4b + 4 \) Factor out a \( 5 \) on the right and complete the square \( 4a^{2} + 4b^{2} \geq 5 \left ( b^{2} + \frac{4}{5}b + \frac{4}{25} \right ) - \frac{4}{5} + 4 \) Factor and simplify \( 4a^{2} + 4b^{2} \geq 5 \left ( b + \frac{2}{5} \right )^{2} + \frac{16}{5} \) Divide both sides by \( 4 \) \( a^{2} + b^{2} \geq \frac{5}{4} \left ( b + \frac{2}{5} \right )^{2} + \frac{4}{5} \) This implies that \( a^{2} + b^{2} \) has a minimum at the vertex of the parabola on the right side when \( b = - \frac{2}{5} \), so: \( \therefore a^{2} + b^{2} = \frac{4}{5} \)
Here's my attempt at a solution. Spoiler: My Solution Since \( x^{4} +ax^{3}+bx^{2}+ax+1 = 0 \), then we can assume that \( x \neq 0 \). Dividing by \( x^{2} \) yields: \( x^{2} + ax + \frac{a}{x} + b + \frac{1}{x^{2}} = 0 \) Rearrange terms \( x^{2} + \frac{1}{x^{2}} + ax + \frac{a}{x} + b = 0 \) Add \( 2 \) and Subtract \( 2 \) \( \left ( x^{2} + 2 + \frac{1}{x^{2}} \right ) + \left ( ax + \frac{a}{x} \right ) + b - 2 = 0 \) Factor each set of parentheses \( \left ( x + \frac{1}{x} \right )^{2} + a \left ( x + \frac{1}{x} \right ) + b - 2 = 0 \) Let \( v = x + \frac{1}{x} \), then we have \( v^{2} + av + b - 2 = 0 \). Use the quadratic formula in attempt to solve for \( v \): \( v = \frac{ (-a) \pm \sqrt{(-a)^{2}-4(1)(b - 2)} }{2(1)} \) Simplify \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) Recall that \( v=x + \frac{1}{x} \), then multiplying by \( x \) yields: \( vx = x^{2} + 1 \) Subtract \( vx \) from both sides \( x^{2} - vx + 1 = 0 \) In order for this to have "at least one real root", then the discriminant \( \Delta \geq 0 \): \( (-v)^{2} - 4(1)(1) \geq 0 \) Simplify \( v^{2} - 4 \geq 0 \) Add \( 4 \) to both sides \( v^{2} \geq 4 \) Since \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) and \( v^{2} \geq 4 \), then: \( \left ( \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \right )^{2} \geq 4 \) Simplify \( \frac{ \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} }{4} \geq 4 \) Multiply by \( 4 \) \( \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} \geq 16 \) Expand the left side \( a^{2} \pm 2a \sqrt{a^{2}-4b + 8} + a^{2}-4b + 8 \geq 16 \) Combine like terms \( 2a^{2} \pm 2a \sqrt{a^{2}-4b + 8} - 4b + 8 \geq 16 \) Divide both sides by \( 2 \) \( a^{2} \pm a \sqrt{a^{2}-4b + 8} - 2b + 4 \geq 8 \) Isolate the square root term \( \pm a \sqrt{a^{2}-4b + 8} \geq 8 - a^{2} + 2b - 4 \) Combine like terms \( \pm a \sqrt{a^{2}-4b + 8} \geq 4 - a^{2} + 2b \) Square both sides \( a^{2} \left ( a^{2}-4b + 8 \right ) \geq \left ( 4 - a^{2} + 2b \right )^{2} \) Expand both sides \( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 4a^{2} + 8b - 4a^{2} + a^{4} - 2a^{2}b + 8b - 2a^{2}b +4b^{2} \) Combine like terms \( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 8a^{2} + 16b + a^{4} - 4a^{2}b + 4b^{2} \) Simplify/Cancel out terms \( 8a^{2} \geq 16 - 8a^{2} + 16b + 4b^{2} \) add \( 8a^{2} \) to both sides \( 16a^{2} \geq 16 + 16b + 4b^{2} \) Divide by \( 4 \) on both sides \( 4a^{2} \geq 4 + 4b + b^{2} \) Add \( 4b^{2} \) to both sides and rewrite \( 4a^{2} + 4b^{2} \geq 5b^{2} + 4b + 4 \) Factor out a \( 5 \) on the right and complete the square \( 4a^{2} + 4b^{2} \geq 5 \left ( b^{2} + \frac{4}{5}b + \frac{4}{25} \right ) - \frac{4}{5} + 4 \) Factor and simplify \( 4a^{2} + 4b^{2} \geq 5 \left ( b + \frac{2}{5} \right )^{2} + \frac{16}{5} \) Divide both sides by \( 4 \) \( a^{2} + b^{2} \geq \frac{5}{4} \left ( b + \frac{2}{5} \right )^{2} + \frac{4}{5} \) This implies that \( a^{2} + b^{2} \) has a minimum at the vertex of the parabola on the right side when \( b = - \frac{2}{5} \), so: \( \therefore a^{2} + b^{2} = \frac{4}{5} \)