- Thread starter
- #1

#### Albert

##### Well-known member

- Jan 25, 2013

- 1,225

$4^\sqrt{5x+9y+4z}-68\times2^\sqrt{5x+9y+4z}+256=0$

please find:

$\max(x+y+z)\times \min(x+y+z)$

- Thread starter Albert
- Start date

- Thread starter
- #1

- Jan 25, 2013

- 1,225

$4^\sqrt{5x+9y+4z}-68\times2^\sqrt{5x+9y+4z}+256=0$

please find:

$\max(x+y+z)\times \min(x+y+z)$

- Moderator
- #2

- Feb 7, 2012

- 2,707

- Thread starter
- #3

- Jan 25, 2013

- 1,225

from Opalg's mention :

$5x+9y+4z = 4$ or $36$.

for:$4x+4y+4z\leq 5x+4y+9z\leq 9x+9y+9z$

if $5x+4y+9z=4$

then :$4x+4y+4z\leq 4 \leq 9x+9y+9z$

$\therefore x+y+z\geq \dfrac {4}{9}$

if $5x+4y+9z=36$

then :$4x+4y+4z\leq 36 \leq 9x+9y+9z$

$\therefore x+y+z\leq 9$

and we get :$max(x+y+z)\times min(x+y+z)=4$