Jan 5, 2021 Thread starter Admin #1 anemone MHB POTW Director Staff member Feb 14, 2012 3,812 Find all the integer values of $m$ for which the equation $\left\lfloor \dfrac{m^2x-13}{1999}\right\rfloor=\dfrac{x-12}{2000}$ has 1999 distinct real solutions.
Find all the integer values of $m$ for which the equation $\left\lfloor \dfrac{m^2x-13}{1999}\right\rfloor=\dfrac{x-12}{2000}$ has 1999 distinct real solutions.