- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,967
Assume that $a, b, c, d$ are positive integers and $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3}{4}$, and \(\displaystyle \sqrt{a^2+c^2}-\sqrt{b^2+d^2}=15\), find $ac+bd-ad-bc$.
Assume that $a, b, c, d$ are positive integers and $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3}{4}$, and \(\displaystyle \sqrt{a^2+c^2}-\sqrt{b^2+d^2}=15\), find $ac+bd-ad-bc$.