Welcome to our community

Be a part of something great, join today!

Find a 4 digit number...

eddybob123

Active member
Aug 18, 2013
76
I challenge users to find a four digit number $\overline{abcd}$ that is equal to $a^a+b^b+c^c+d^d$. (Drunk)
 

MarkFL

Administrator
Staff member
Feb 24, 2012
13,775
I felt it was better to begin a new topic for this, especially since the other problem had not been solved yet. :D
 

Albert

Well-known member
Jan 25, 2013
1,225
I challenge users to find a four digit number $\overline{abcd}$ that is equal to $a^a+b^b+c^c+d^d$. (Drunk)
Ans :$3435=3^3+4^4+3^3+5^5$
for $6^6=46656>9999$
$\therefore a,b,c,d \leq5$
$3^3=27$
$4^4=256$
$5^5=3125$
the next procedure is easy
 
Last edited: