- Thread starter
- #1

#### eddybob123

##### Active member

- Aug 18, 2013

- 76

I challenge users to find a four digit number $\overline{abcd}$ that is equal to $a^a+b^b+c^c+d^d$.

- Thread starter eddybob123
- Start date

- Thread starter
- #1

- Aug 18, 2013

- 76

I challenge users to find a four digit number $\overline{abcd}$ that is equal to $a^a+b^b+c^c+d^d$.

- Admin
- #2

- Jan 25, 2013

- 1,225

Ans :$3435=3^3+4^4+3^3+5^5$I challenge users to find a four digit number $\overline{abcd}$ that is equal to $a^a+b^b+c^c+d^d$.

for $6^6=46656>9999$

$\therefore a,b,c,d \leq5$

$3^3=27$

$4^4=256$

$5^5=3125$

the next procedure is easy

Last edited: