Field Momentum of a Dipole in a Static Field

In summary, we can use the magnetic vector potential for the magnetic dipole, expand its curl, and use the definition of EM momentum to show that the fields carry momentum and arrive at the desired equation.
  • #1
ELB27
117
15

Homework Statement


Consider an ideal stationary magnetic dipole ##\vec{m}## in a static electric field ##\vec{E}##. Show that the fields carry momentum ##\vec{p} = -\epsilon_0\mu_0\left(\vec{m}\times\vec{E}\right)##.

Homework Equations


Momentum stored in electromagnetic fields: ##\vec{p} = \epsilon_0\int(\vec{E}\times\vec{B})d\tau## where ##d\tau## is an infinitesimal volume element.
For static electric fields: ##\vec{E} = -\nabla V## where ##V## is the electric potential.
A product rule I used in my attempt: ##\nabla\times(f\vec{A}) = f(\nabla\times\vec{A}) - \vec{A}\times(\nabla f)## where ##f## is a scalar function while ##\vec{A}## is a vector function.
For static magnetic fields: ##\nabla\times\vec{B} = \mu_0\vec{J}## where ##\vec{J}## is the volume current density.
Also, for steady currents: ##\nabla\cdot\vec{J} = 0##.
Another identity I used: ##\oint(\vec{c}\cdot\vec{r})d\vec{l} = \vec{a}\times\vec{c}## where ##\vec{c}## is a constant vector and ##\vec{a} = \int_S d\vec{a}## is the vector area.
Yet another identity: ##\int_{\nu}(\nabla\times\vec{v})d\tau = -\oint_S\vec{v}\times d\vec{a}## where ##\nu## is a volume and ##S## is its surface.
Finally, ##\int\vec{J}d\tau = \frac{d\vec{P}}{dt}## where ##\vec{P}## is the total electric dipole moment (0 in our problem)

The Attempt at a Solution


First, I substitute ##\vec{E} = -\nabla V## into ##\vec{p} = \epsilon_0\int(\vec{E}\times\vec{B})d\tau## to get ##\vec{p} = \epsilon_0\int(\vec{B}\times\nabla V)d\tau##. From here, I use the product rule quoted above to get that ##\int\vec{B}\times\nabla V d\tau = \int V(\nabla\times\vec{B})d\tau - \int\nabla\times(V\vec{B})d\tau##. Now, by another identity: ##- \int\nabla\times(V\vec{B})d\tau = -\oint_S\vec{v}\times d\vec{a}##. But what is the volume/surface we're integrating over? All of space! Thus, the surface is at infinity and ##\vec{B}=0## there (since it is far away from the dipole) and this integral vanishes. We're thus left with ##\vec{p} = \epsilon_0\int V(\nabla\times\vec{B})d\tau = \epsilon_0\mu_0\int V\vec{J}d\tau##. Since the only current is confined to the infinitesimal volume near the origin (i.e. the dipole), this integral is nonzero only there. Thus, ##V## can be expanded with a Taylor series for vectors about the origin: ##V ≈ V(0) - \vec{E}(0)\cdot\vec{r}##. With this, our expression becomes: ##\vec{p} = \epsilon_0\mu_0\int (V(0) - \vec{E}(0)\cdot\vec{r})\vec{J}d\tau##. Focusing our attention on the first integral, ##\int V(0)\vec{J}d\tau = V(0)\int\vec{J}d\tau = 0## as noted above. Thus, ##\vec{p} = -\epsilon_0\mu_0\int (\vec{E}(0)\cdot\vec{r})\vec{J}d\tau##.
Now I am stuck. I wanted to just say that ##\vec{J}d\tau → \vec{I}dl = Id\vec{l}## since the dipole can be treated as a current loop. Then, everything works out by using the other identities involving line integrals I quoted. But my math conscientiousness didn't allow me to. So can anyone give me any hint as to how to proceed with this proof or suggest a simpler method for doing it?

Any suggestions/comments will be greatly appreciated!
 
  • Like
Likes Salazar
Physics news on Phys.org
  • #2
Hi ELB27

A good attempt, but two things stand out to me:

(1) I don't see why you assume the total electric dipole moment is zero
(2) Your series expansion for [itex]V(0)[/itex] looks dubious in general. In particular, how do you justify throwing away the higher order terms, and how does an expression with just [itex]\vec{E}(0)[/itex] help you reach the desired formula?

As an alternative approach, you might try working with the magnetic vector potential for the magnetic dipole instead, and expanding its curl a little before plugging it into the definition for EM momentum. A quick BoE (Back of Envelope) calculation gives me the desired equation plus one extra term which presumabely integrates to zero.

Cheers,
gabba
 
  • Like
Likes ELB27
  • #3
gabbagabbahey said:
Hi ELB27

A good attempt, but two things stand out to me:

(1) I don't see why you assume the total electric dipole moment is zero
(2) Your series expansion for [itex]V(0)[/itex] looks dubious in general. In particular, how do you justify throwing away the higher order terms, and how does an expression with just [itex]\vec{E}(0)[/itex] help you reach the desired formula?

As an alternative approach, you might try working with the magnetic vector potential for the magnetic dipole instead, and expanding its curl a little before plugging it into the definition for EM momentum. A quick BoE (Back of Envelope) calculation gives me the desired equation plus one extra term which presumabely integrates to zero.

Cheers,
gabba
Thank you for the reply. First, to address your questions:
(1) Your'e right. After looking at the definition, I cannot justify this step. In my original approach, I just thought that since there are no electric dipoles, there is no dipole moment...
(2) I took the expansion from here (scroll all the way down). I justify throwing away all higher order terms by noting that the integral is nonzero only in an infinitesimal volume enclosing the origin (since that's where the dipole is and ##\vec{J}## is nonzero only there). As for ##\vec{E}_0##, again your'e probably right. I thought that after the integration, I will be able to get ##\vec{E}## back.

Now to your method. By definition, ##\vec{A}_{dip} = \frac{\mu_0}{4\pi}\frac{\vec{m}\times\hat{r}}{r^2}##. Taking the curl: ##\vec{B} = \nabla\times\vec{A} = \frac{\mu_0}{4\pi}\nabla\times\left(\vec{m}\times\frac{\hat{r}}{r^2}\right)##. Using a product rule to expand the curl of the cross product: ##\nabla\times\left(\vec{m}\times\frac{\hat{r}}{r^2}\right) = \left[(\frac{\hat{r}}{r^2}\cdot\nabla)\vec{m} - (\vec{m}\cdot\nabla)\frac{\hat{r}}{r^2} + \vec{m}(\nabla\cdot\frac{\hat{r}}{r^2}) - \frac{\hat{r}}{r^2}(\nabla\cdot\vec{m})\right]##. Now ##\vec{m}## is a constant vector, therefore all terms involving its various derivatives vanish. Also, ##\nabla\cdot\frac{\hat{r}}{r^2} = 4\pi\delta^3(\vec{r})## where ##\delta^3(\vec{r})## is the 3-dimensional Dirac-Delta function. Thus, we're left with ##\left[4\pi\delta^3(\vec{r})\vec{m} - (\vec{m}\cdot\nabla)\frac{\hat{r}}{r^2}\right]##. To simplify the second term even more, let's use another product rule for gradient of a dot product: ##\nabla\left(\vec{m}\cdot\frac{\hat{r}}{r^2}\right) = \vec{m}\times(\nabla\times\frac{\hat{r}}{r^2}) + \frac{\hat{r}}{r^2}\times(\nabla\times\vec{m}) + (\vec{m}\cdot\nabla)\frac{\hat{r}}{r^2} + (\frac{\hat{r}}{r^2}\cdot\nabla)\vec{m}##. Noting that, again, ##\vec{m}## is constant and that the curl of ##\frac{\hat{r}}{r^2}## is zero (this vector diverges from the origin without any rotation), we get that ##(\vec{m}\cdot\nabla)\frac{\hat{r}}{r^2} = \nabla\left(\vec{m}\cdot\frac{\hat{r}}{r^2}\right)##. Putting everything together: ##\vec{B} = \frac{mu_0}{4\pi}\left[4\pi\delta^3(\vec{r})\vec{m} - \nabla(\vec{m}\cdot\frac{\hat{r}}{r^2})\right]##. Now, we substitute this formula into the definition of EM momentum: ##\vec{p} = \epsilon_0\int(\vec{E}\times\vec{B})d\tau = \frac{\epsilon_0\mu_0}{4\pi}\left[ \int 4\pi\delta^3(\vec{r})(\vec{E}\times\vec{m})d\tau - \int\vec{E}\times\nabla\left(\vec{m}\cdot\frac{\hat{r}}{r^2}\right)d\tau\right]## where the integration is over all space. Now, let's split this monster into two. The first term is easy: ##\int 4\pi\delta^3(\vec{r})(\vec{E}\times\vec{m})d\tau = 4\pi(\vec{E}\times\vec{m})##. The second term requires another product rule for curl of a scalar and a vector: ##\nabla\times\left[(\vec{m}\cdot\frac{\hat{r}}{r^2})\vec{E}\right] = (\vec{m}\cdot\frac{\hat{r}}{r^2})(\nabla\times\vec{E}) - \vec{E}\times\nabla(\vec{m}\cdot\frac{\hat{r}}{r^2})##. Since ##\vec{E}## is static, it curl is zero. Therefore: ##-\vec{E}\times\nabla(\vec{m}\cdot\frac{\hat{r}}{r^2}) = \nabla\times\left[(\vec{m}\cdot\frac{\hat{r}}{r^2})\vec{E}\right]##. Now, let's focus again on the integral and use the formula for the volume integral of the curl I quoted in the OP: ##\int\nabla\times\left[(\vec{m}\cdot\frac{\hat{r}}{r^2})\vec{E}\right]d\tau = -\oint_S (\vec{m}\cdot\frac{\hat{r}}{r^2})\vec{E}\times d\vec{a}##. But what is this surface of integration? Since the volume integral is all of space, the surface is at infinity. There, ##\frac{\hat{r}}{r^2} = 0## and therefore, assuming ##\vec{E}\neq\infty## at ##r=\infty##, ##\oint_S (\vec{m}\cdot\frac{\hat{r}}{r^2})\vec{E}\times d\vec{a} = 0##. Thus, we're finally left with: ##\vec{p} = \frac{\epsilon_0\mu_0}{4\pi}4\pi(\vec{E}\times\vec{m}) = -\epsilon_0\mu_0(\vec{m}\times\vec{E})##.

Phew! Thank you very much for suggesting this method. It may be long but much more convincing. Also, I couldn't resist:

woody and buzz.jpg
 
  • Like
Likes Salazar
  • #4
ELB27,

Here is a link to a paper that contains a derivation very similar to your first attempt: http://www.lepp.cornell.edu/~rb532/thesis_final.pdf

There are of course many papers on electromagnetic field momentum. You can look at the references contained in the above link. Also, K. McDonald has written a number of interesting papers on this topic which you can find here: http://www.hep.princeton.edu/~mcdonald/examples/. You will need to sift out the relevant papers from the long list of papers on other topics. This guy has written a lot of very interesting papers.

Also, there is a fairly recent resource letter in the American Journal of Physics by Griffiths:
Am. J. Phys. 80, 7 (2012); http://dx.doi.org/10.1119/1.3641979
 
Last edited:
  • Like
Likes ELB27
  • #5
TSny said:
ELB27,

Here is a link to a paper that contains a derivation very similar to your first attempt: http://www.lepp.cornell.edu/~rb532/thesis_final.pdf

There are of course many papers on electromagnetic field momentum. You can look at the references contained in the above link. Also, K. McDonald has written a number of interesting papers on this topic which you can find here: http://www.hep.princeton.edu/~mcdonald/examples/. You will need to sift out the relevant papers from the long list of papers on other topics. This guy has written a lot of very interesting papers.

Also, there is a fairly recent resource letter in the American Journal of Physics by Griffiths:
Am. J. Phys. 80, 7 (2012); http://dx.doi.org/10.1119/1.3641979
Thank you very much for these! I just read the first one and saw that there is another identity I could have used that would solve the problem. For future reference: ##\int(\vec{r}\cdot\vec{c})\vec{J}d\tau = -\frac{1}{2}\vec{c}\times\int(\vec{r}\times\vec{J})d\tau##. I was aware of the page of Kirk McDonald before and I have to say that this is a fantastic resource and it came in handy on numerous occasions.
 
  • Like
Likes Salazar

Related to Field Momentum of a Dipole in a Static Field

1. What is field momentum of a dipole in a static field?

The field momentum of a dipole in a static field is the rotational momentum of a dipole in a uniform electric or magnetic field. It is a measure of the dipole's ability to rotate in response to the applied field.

2. How is field momentum calculated?

Field momentum is calculated by multiplying the dipole moment vector by the applied field vector. The resulting vector is known as the torque vector, and its magnitude represents the field momentum of the dipole.

3. What factors affect the field momentum of a dipole?

The field momentum of a dipole is affected by the strength of the applied field, the orientation of the dipole relative to the field, and the magnitude of the dipole moment. Additionally, the shape and size of the dipole can also impact its field momentum.

4. How does the field momentum of a dipole change in a non-uniform field?

In a non-uniform field, the field momentum of a dipole will change as the dipole rotates to align with the varying field. This can result in a net torque acting on the dipole, causing it to rotate and potentially gain or lose field momentum.

5. What are some real-world applications of field momentum of a dipole in a static field?

The concept of field momentum is important in understanding the behavior of materials in electric and magnetic fields. It is used in the design of motors, generators, and other electromechanical devices. It also plays a role in the behavior of particles in particle accelerators and in the development of new technologies, such as magnetic levitation trains.

Similar threads

Replies
1
Views
474
  • Advanced Physics Homework Help
Replies
1
Views
540
  • Advanced Physics Homework Help
Replies
2
Views
885
  • Advanced Physics Homework Help
Replies
12
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
17
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
744
Replies
27
Views
2K
  • Advanced Physics Homework Help
Replies
4
Views
2K
  • Advanced Physics Homework Help
Replies
2
Views
1K
Back
Top