Is There Shade in Outer Space?

  • Thread starter zoobyshoe
  • Start date
  • Tags
    Space
In summary: There is definitely somethingabout how the air absorbsheat. It's one of the reasonswhy the temp on thesunshine side of abuilding may be warmerthan the shady side.But again, I'm not sureif that's something thatwould be relevant to thisdiscussion.
  • #1
zoobyshoe
6,510
1,290
is it in the shade in outer space?
 
Astronomy news on Phys.org
  • #2
I'm sure someone more qualified to answer this will chime in soon, but I'd expect it to be around 3 degrees Kelvin, in other words the same temp as the cosmic background radiation.
 
  • #3
That is much colder than I
thought. How do they prevent the
shuttle, say, from breaking apart
because of the temperature dif-
ferences between the sunny and
shady sides?
 
  • #4
I believe it does creak a bit, as astronauts have reported. The ISS still more. This is a good point and thermal stress is one of the things the space engineers have to deal with.

Notice that satellites and spacecraft are mostly made out of thermally conductive metal. So they tend - only tend - to assume a thermal equilibrium, and that is actuallly pretty hot for objects close to Earth's orbit. I believe the black body temperature due to the sun's radiation at Earth distance is about 80o F.
 
  • #5
Originally posted by zoobyshoe
That is much colder than I
thought. How do they prevent the
shuttle, say, from breaking apart
because of the temperature dif-
ferences between the sunny and
shady sides?

I understand that skylab was always rather noisy because of expanding
and contracting of various parts---creaking, popping, drum-booming----the sounds that metal structures make under uneven thermal stress. Maybe they just allow for it in the design.

this is a fun question
and I am not offering an actual answer---only a discussion of it
I agree with radagast about 3 kelvin
but it makes one think about temperature and how its defined
(strictly speaking for systems in equilibrium, and yet
practically nothing is ever completely in equilibrium
so there is always a rakish ad hoc element in applications.)

and to extend the question of Zooby to the moon:
"how do they keep the moon from breaking apart
because of the temperature differences between
the sunny and shady side" which might be
one of those classic evocative questions
like "why is the sky blue"

There is always conduction laterally from the hot frontside around to the cold backside, or thru the body if it isn't hollow
but forgetting about conduction think about how a side of the moon which has been in the sun and now finds itself in the shade could cool off
what could cool it, since it is in vacuum?

only its own radiation-----so it gradually radiates off infrared.
The neat thing about this is that it follows an amazing fourth-power law discovered by two Viennese gentlemen of the Victorian era and half raised to the fourth is a sixteenth

so that after the temp has fallen down to one half of what it was, the thing is radiating away heat only a sixteenth as fast

and so it goes----slower and slower
when it is down to 1/3 of its original temp then
the rate energy is leaving it is down to 1/81 of
the original rate----very slow.

so once a thing has been exposed to sunlight and soaked up a little heat, if you put it in shade it will take a REALLY long time
to cool down to 3 kelvin----sitting in the vacuum with nothing
but its own radiation as a way of getting rid of heat.

this is just one thought evoked by that question
I could imagine people writing in with quite a few other
observations about it, and related questions like why
does the equilbrium temp of planets go as the square root
of the distance from the sun so that if a planet is 9 times
farther away its temperature is not 1/9 but instead is 1/3
as high, and stuff like that
 
  • #6
Self Adjoint, I didnt see your reply when I wrote mine, could have simply not replied! Yes, you say something like 80F

What I find in a battered handbook is 394 kelvin for the flat surface facing sunlight at this distance from the sun
(the hot sidewalk on which one fries the egg, on the moon
to make sure there are no clouds)

and beautifully enough a generic black ball or let us say a cannonball of any size at this distance from the sun has an equilibrium which is
394 kelvin divided by the square root of 2

which is 279 kelvin

so I guess it would not be quite 80 F but more like 50 F (and my handbook can be a bit off) but both our estimates would be in the ballpark
-------------------------
edit:
numbers often frustrating, using 1370 watt per square meter as
solar constant and 5.67E-8 for StefanBoltzmann I actually
calculate 394 kelvin, in agreement with handbook.
But there is a bit of play in the solar constant and some people
use 1380, so they'd calculate something a bit higher for
the equilibrium temp
 
Last edited:
  • #7
SelfAdjoint,

What's your guess on how close a
satellite gets to blackbody?

I think I'd jump right out of my
skin if I were on the shuttle and
heard it start creaking.Marcus,

Fascinating stuff! It's comforting
to learn the moon won't be crack-
ing apart from temperature dif-
ferentials in the near future.

I completely blanked out on the
subject of air and was imagining
that as soon as a thing went into
the shade in outer space it would
be assaulted by unbelievable cold.
But of course, as you point out,
it isn't. All that happens is that
it begins to radiate its heat. It
is nice to find out that even this
becomes increasingly slower as it
progresses. I feel better about
the shuttle. I don't like the
sound of those Skylab noises, tho.

-Zooby
 
  • #8
Zooby, to me the most aesthetic aspect
is a certain squareroot of two
that gets into the picture


in vacuum at any distance from sun
a generic flat surface facing sunlight reaches some equilibrium temp
(which depends on the distance)
and that temperature is the squareroot of two
times the temp that a generic cannonball object reaches


because the ball has four times the surface area
of a flat plate that is intercepting the same amount of sunlight
and because the fourth-root of four is the squareroot of 2

Pythagoras would have liked that, too bad no one told him

equilibrium temp depends on balancing incoming and outgoing
so it is determined by the fourthpower radiation law
 
Last edited:
  • #9
Regarding sattelites and such, have you evernoticed that most sattelites spin along their own axis while orbiting? That's one way of deminishing the problems that come with unneven heating. Keep in mind, an object in orbit doesn't just have to deal with the thermal differences involved in going from the Sunward side of a body to its dark side; the object also has its own shade. The Shuttle and stations have "circulatory systems" to help cope. Thay continually circulate fluid around just under the skin, taking heat from one side to the other, while the craft is exposed to sunlight.
 
  • #10
Originally posted by LURCH
Keep in mind, an object in orbit doesn't just have to deal with the thermal differences involved in going from the Sunward side of a body to its dark side; the object also has its own shade. The Shuttle and stations have "circulatory systems" to help cope. Thay continually circulate fluid around just under the skin, taking heat from one side to the other, while the craft is exposed to sunlight.

Yes, this huge difference between
the sun side and shade side of
an object in space is exactly what
got me wondering if it posed a
threat to the shuttle. Not that
the sun side would get very hot
but that the shade side was SO
dam cold that the temperature
difference would cause an
untenable contraction of the mat-
erial on that side.

Do you have any idea what fluid
they circulate, Lurch? What
earthly anti-freeze could with-
stand 3 Kelvin?

Yes, I had this notion that satel-
lights rotated on their own axis
but I could figure how they keep
their antennae oriented if they
rotate. Or cameras or reflectors?

-zoob
 
  • #11
My 80oF figure came out of an old Willy Ley book or article. He was pointing out that the problem in space stations (which did not exist when he wrote) was not keeping warm, but getting rid of heat.
 
  • #12
And did that actually turn out to
be a problem? Given what marcus
brought up about the slow rate
of radiation it doesn't seem
unlikely.
 
  • #13
Originally posted by zoobyshoe
And did that actually turn out to
be a problem? Given what marcus
brought up about the slow rate
of radiation it doesn't seem
unlikely.

Zooby indeed because of the slow rate of radiating heat
it is hard and even costly to dump waste heat
every energy conversion process, life, electric power generation,
even running a computer, produces low-grade waste heat which
if it builds up is unconfomfortable (and eventually worse than uncomfortable)
but at room temperature waste heat radiates slowly and so
you need a very large radiator surface
The good Willy calculated this using the fourth power law
of radiation.

both willy and selfadjoint are right. if I have said anything inconsistent with them I must have made an error.
 
  • #14
Originally posted by zoobyshoe

Do you have any idea what fluid
they circulate, Lurch? What
earthly anti-freeze could with-
stand 3 Kelvin?

-zoob

I'm not sure what they use, I always assumed it was regular anti-freeze. Keeping in mind, of course, that the fluid never actually drops to 3o K; the problem is getting cool enough. As the fluid gets 'round to the cold side, it begins to radiate heat, but it never gets rid of all the heat it picked up on the warm side. So the whole sattelite maintains a (nearly) uniform temperature, and the fluid doesn't experience any real extremes.

As an example, I do know what fluid ciculates in an EVA suit to perform the same function. It's water. Or at least, it used to be, I'm not sure if that's what they still use.
 
  • #15
Originally posted by marcus
Zooby indeed because of the slow rate of radiating heat
it is hard and even costly to dump waste heat
For someone like myself who lived
in the frozen wastes of Minnesota
for eight years this all comes as
a counterintuitive realization.
It takes a bit of work to grasp
that without convection and con-
duction a Minnesotan could end
up being cozier on a space station
where the temperature outside is
three degrees above absolute zero
than he would just about anywhere
inside in Minnesota during the
winter.[/B][/QUOTE]
 
  • #16
This week in Space Weekly:

New McDonald's technology allows NASA engineers to "keep hot side hot; cool side cool"!
 
  • #17
Originally posted by marcus ...it follows an amazing fourth-power law discovered by two Viennese gentlemen of the Victorian era and half raised to the fourth is a sixteenth
I have been thinking about this a little and nothing obvious strikes
me about Vienna during the reign
of Victoria that would induce two
gentlmen to start wondering about
radiation in the cold vacuum of
space. What is their story?
 
  • #18
Yes, in spite of frigid phenomena due to Earth's tilt guaranteeing that its subpolar regions are shaded for months at a time, the Earth is sensitive to waste heat radiation. Futurists predict that if all the third world were brought up to US standrds of energy usage the resulting waste heat would warm the Earth by several degrees. This is in addition to the usual greenhouse sources of global warming.
 
  • #19
Originally posted by zoobyshoe
I have been thinking about this a little and nothing obvious strikes
me about Vienna during the reign
of Victoria that would induce two
gentlmen to start wondering about
radiation in the cold vacuum of
space. What is their story?

Dont have time to research it adequately. Probably answer is in
some biography or history of science book. Here is some
background detail (but cannot answer main question):

Stefan was secretary of the Vienna Academy of Sciences from 1875 and discovered this thing about radiation in 1879. which then Boltzmann explained on theoretical grounds in 1884.
So Stefan was already a recognized Austrian science dude when he discovered the fourth-power law experimentally.
It was waltz time in Vienna and the Impressionists were
painting in Paris. Europe hadnt had a major war since Napoleon (going on 70 years)

Ludwig Boltzmann (1844-1906) was known for being something of a dandy and a playboy. He explained the second law of thermodynamics by the statistical behavior of atoms and molecules at a time when a lot of physicists refused to believe in atoms. As he got older he suffered from depression and eventually shot himself at some scenic vacation spot in Italy. It was not always easy to have as much fun as Boltzmann thought he should be having. He managed to lead a rather flamboyant life and be world-class creative theoretical physicist to boot.

Josef Stefan was an experimentalist. As far as I know he was just this Middle European guy who happened to measure the glow from hot objects and who happened to find out that if you made an object twice as hot it would radiate 16 times as much power.
It's very generic stuff, the hot object does not have to be in space. It can be an electric hotplate. It can be the sun. If the sun were twice the temp it is then it would make 16 times as much light.

Boltzmann, the bon vivant with the big beard, developed theory around this experimental fact. It became known as the
"Stefan-Boltzmann Law" or more formally as the
"Stefan-Boltzmann Fourth Power Radiation Law".

But Boltzmann did a lot else besides. He invented the fundamental physical constant known as "Boltzmann's k"
A lot of formulas in a bunch of different fields have a "kT" in them.
If you look at formulas for how a transistor works you see kT, or about heat capacities and melting points, kT, or how pressure and volume are related to temperature in gasses, kT, or the speed of sound, chemical reaction rates, whatall. If you looked up the formulas for how a star works inside, and how it is structured, they would have a lot of kT terms.

the unit in which Boltzmann's k is expressed is the unit of entropy,
or if you like to think of it another way, the unit of heat capacity:
amount of energy per degree of temperature.
Boltzmann's k gets into about as many formulas as Planck's hbar.

the Stefan-Boltzmann Fourth Power Radiation Law says the power (watts) that something radiates is proportional to the fourth power of its temp

power = sigma T4

where the constant sigma is a hairy combination of k, hbar and c:

sigma = k4/hbar3c2 multiplied by, of all things, pi2/60

Now this, I am afraid, is only background. Your question is how did they happen to investigate the relation between how hot she is and how brightly she glows, where she is a generic object, and how did they happen to find out this deep hidden proportion in nature. And why in Vienna.
 
Last edited:
  • #20
Originally posted by zoobyshoe
That is much colder than I
thought. How do they prevent the
shuttle, say, from breaking apart
because of the temperature dif-
ferences between the sunny and
shady sides?
You have to remember that since there is no air in space heat can only be carried away by radiation. So its not like the skin temperature of the shuttle is 3K.
 
  • #21
Originally posted by LURCH
This week in Space Weekly:

New McDonald's technology allows NASA engineers to "keep hot side hot; cool side cool"!
Lurch,
I didn't get it. What's the new
technology? Or is this a funny
that went over my head?
 
  • #22
Originally posted by selfAdjoint
Yes, in spite of frigid phenomena due to Earth's tilt guaranteeing that its subpolar regions are shaded for months at a time, the Earth is sensitive to waste heat radiation. Futurists predict that if all the third world were brought up to US standrds of energy usage the resulting waste heat would warm the Earth by several degrees. This is in addition to the usual greenhouse sources of global warming.
I find this disturbing because it
amounts to a disincentive to help
third world countries better their
standards of living. Would a way
around this be to foster the use
of solar power, which is already
being delivered there anyway dir-
ectly as heat?
What, exactly, is a futurist? Are
there people employed to calculate
things like this about the future?

-Zoob
 
  • #23
Originally posted by
Marcus
Now this, I am afraid, is only background.
I very much enjoy the luxuriance
of your responses. This one gives
me plenty to think about and
absorb.
I loved: "...multiplied by, of
all things, pi2/60."
I don't understand it well enough
to know why it pulled that paren-
thetical out of you, but the fact
it did made me smile.

My question came from the assum-
tion that the "two gentlemen"
were exploring the issue as a kind
of thought experiment arising from
wonder about heat radiation in
outer space. I see now that this
probably isn't what prompted them
at all. If it had been I would
like to have known what got them
thinking so creatively at that
particular time in history.

Now that I have this background
and know the names I can look up
the details when the spirit next
moves me.
Thanks much.
-zooby
 
  • #24
Originally posted by russ_watters You have to remember that since there is no air in space heat can only be carried away by radiation. So its not like the skin temperature of the shuttle is 3K.
Yes, indeed, I had spaced out
about the air situation when I
first started thinking about this
and those scenes from Apollo 13
where things are getting colder
and they can see their breath and
are shivering (there is air inside
the shuttle) contributed to an
exaggerated impression of how fast
the exterior would get cold in the
shade. Whenever I think about
space I think about weightlessness
and 0 air pressure. For some
reason this is the first time I
started considering the implicat-
ions of the temperature.
My little one man rocket in the
back yard is almost finished. Is
there anything else I should be
worried about?
 
  • #25
Originally posted by zoobyshoe
I find this disturbing because it
amounts to a disincentive to help
third world countries better their
standards of living. Would a way
around this be to foster the use
of solar power, which is already
being delivered there anyway dir-
ectly as heat?
What, exactly, is a futurist? Are
there people employed to calculate
things like this about the future?

-Zoob

There are indeed people who are employed to calculate and run simulations about the future use of resources. Some of them are in academia, others work for governments, and still others are employed by advocacy groups. The calculation on energy use and heating is not at all thoe most difficult.

The moral usually drawn is not that third world countries should stay as low in energy use, but that first world countries (and especially the biggest user of all, the US) should reduce theirs!
 
  • #26
Satellites are covered with thin metal foils as to reduce, quite effectively, the heating. I used this principal with a woodstove once, Aluminium foil suspended about three inches from a wall, and aboutten inches from the woodstove. With the "Metal Kettle 'a boilin away the water" the wall behind the foil would remain Cold/cool to the touch, definitely cold in comparission to the heat that was being generated by a fully fueled, and fired, airtight woodstove.

During the Apollo missions to the Moon, the Astronauts took temperature readings, and it was found that the Moon was radiating surplus heat relative to what it received as Sun'lighting heating.

Have heard it's near a 400 C difference 'tween the (currently) Sunlit side and the unSunlit side, thereabouts...sorta.
 
  • #27
Originally posted by selfAdjoint
The moral usually drawn is not that third world countries should stay as low in energy use, but that first world countries (and especially the biggest user of all, the US) should reduce theirs!
Which makes perfect sense but,
is anyone actually contemplating
acting on this realization? It
seems highly unlikely to me.

Thanks for the info about
Futurists. The word suggested
something along the lines of a
Science Fiction writer at first.

-Zooby
 
  • #28
<rant warning> No but if the crazy policies of this administration go on for another five years we'll be down to third world status ourselves</Rant warning>
 

1. Is it always dark in outer space?

No, it is not always dark in outer space. While the majority of space appears dark due to the lack of sunlight, there are still objects that emit light such as stars, planets, and galaxies. Additionally, astronauts have reported seeing bright flashes of light caused by cosmic rays and other high-energy particles.

2. Why does outer space appear dark?

Outer space appears dark because of the lack of atmosphere and objects that can reflect or scatter light. On Earth, the atmosphere scatters sunlight, creating a blue sky during the day. In space, with no atmosphere to scatter light, the sky appears black.

3. Is there any light in outer space?

Yes, there is light in outer space. As mentioned before, there are objects that emit light such as stars and galaxies. There is also light from other sources such as cosmic background radiation and light from nearby planets and stars.

4. Is it possible for there to be areas of light in outer space?

Yes, it is possible for there to be areas of light in outer space. For example, nebulae are areas of space where gas and dust reflect and emit light, creating stunning and colorful images. There are also areas of space where stars are clustered closely together, creating a brighter region.

5. Can humans see stars in outer space?

Yes, humans can see stars in outer space. In fact, astronauts on the International Space Station have reported seeing thousands of stars in the dark sky. However, due to the brightness of the sun, it can be difficult to see stars during the day. Astronauts must wait until the sun sets or their spacecraft orbits to the other side of the Earth to see the stars clearly.

Similar threads

  • Astronomy and Astrophysics
Replies
2
Views
769
  • Astronomy and Astrophysics
Replies
27
Views
2K
Replies
32
Views
3K
  • Astronomy and Astrophysics
Replies
13
Views
1K
  • Astronomy and Astrophysics
Replies
4
Views
1K
  • Astronomy and Astrophysics
Replies
3
Views
319
Replies
13
Views
2K
  • Astronomy and Astrophysics
Replies
24
Views
2K
  • Astronomy and Astrophysics
Replies
7
Views
1K
  • Astronomy and Astrophysics
Replies
26
Views
4K
Back
Top