Evaluation of Feynman propagator in position space

In summary: This should work: We can write the second term as##\theta(y^{0}-x^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} e^{i\vec{p}(\vec{x}-\vec{y})}\bigg]=\theta(y^{0}-x^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-
  • #1
spaghetti3451
1,344
33

Homework Statement



Compute ##\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{p^{2}-m^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}## in terms of the invariant interval.

Interpret your answer in the limit of small and large invariant intervals and for zero mass.

Homework Equations



The Attempt at a Solution



##\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{p^{2}-m^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0})^{2}-(E_{\vec{p}})^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0})^{2}-(E_{\vec{p}}-i\epsilon)^{2}}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-(E_{\vec{p}}-i\epsilon))(p^{0}+(E_{\vec{p}}-i\epsilon))}e^{-ip \cdot{(x-y)}}##

Therefore, the contour prescription ##i\epsilon## reminds us to integrate under the pole at ##p^{0}=-E_{\vec{p}}## and over the pole at ##p^{0}=E_{\vec{p}}##. So, let's now drop the ##i\epsilon## term and obtain

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

For ##x^{0}>y^{0}##, we close the contour below (clockwise sense introduces a negative factor) and for ##x^{0}<y^{0}##, we close the contour above (anti-clockwise sense introduces a positive factor), so that

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \theta(x^{0}-y^{0})\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})} +\theta(y^{0}-x^{0})\frac{1}{-2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

Am I correct so far?
 
Physics news on Phys.org
  • #2
failexam said:
##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##
There's probably a sign problem here (unless you have somehow absorbed it into the indices) - the temporal and spatial portions of your dot product should have different signs.
 
  • #3
Well,

##-ip\cdot{(x-y)}=-i[p^{\mu}(x-y)_{\mu}]=-i[p^{0}(x-y)_{0}+p^{i}(x-y)_{i}]##

Now, using the mostly negative signature,

##-i[p^{0}(x-y)_{0}+p^{i}(x-y)_{i}]=-i[p^{0}(x-y)^{0}+p^{i}(x-y)_{i}]=-ip^{0}(x-y)^{0}-ip^{i}(x-y)_{i}]##.

Right?
 
  • #4
Ah okay, it's somewhat confusing but your negative signs are buried within the subscripts - so in that case, I think whatever you've done seems correct. I think though that its generally cleaner to switch to three-vector notation i.e. ##p \cdot x = E_{\vec{p}} t - \vec{p} \cdot \vec{x}##
 
  • #5
Ok, so

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

For ##x^{0}>y^{0}##, we close the contour below (clockwise sense introduces a negative factor) and for ##x^{0}<y^{0}##, we close the contour above (anti-clockwise sense introduces a positive factor), so that

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \theta(x^{0}-y^{0})\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})} +\theta(y^{0}-x^{0})\frac{1}{2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

##=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})}e^{i\vec{p}(\vec{x}-\vec{y})} \bigg]+\theta(y^{0}-x^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} e^{i\vec{p}(\vec{x}-\vec{y})}\bigg]##

The first term gives ##=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})}e^{i\vec{p}(\vec{x}-\vec{y})} \bigg]=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-ip\cdot{(x-y)}} \bigg]\bigg|_{p^{0}=E_{\vec{p}}}=D(x-y)##.

How do I convert the second term to ##-D(y-x)##?
 
  • #6
I think it should be just ##D(y-x)## and not ##-D(y-x)##. The trick is to flip the sign of ##\vec{p}##, which is a valid operation because we are integrating over the entire ##p##-volume, and all other quantities only depend on the magnitude of ##\vec{p}##.
 

Related to Evaluation of Feynman propagator in position space

What is the Feynman propagator in position space?

The Feynman propagator in position space is a mathematical expression used in quantum field theory to calculate the probability amplitude for a particle to move from one position to another in a given amount of time. It takes into account all possible paths that the particle could take between the two points.

Why is the Feynman propagator important in quantum field theory?

The Feynman propagator is important in quantum field theory because it allows for the calculation of transition probabilities between quantum states. It also helps to understand the behavior of particles in quantum systems and is used in various quantum mechanical calculations.

How is the Feynman propagator calculated in position space?

The Feynman propagator in position space is calculated by summing up all possible paths that a particle could take between two points, with each path weighted by a phase factor. This is known as the path integral formulation and is a fundamental concept in quantum field theory.

What are the limitations of using the Feynman propagator in position space?

One limitation of using the Feynman propagator in position space is that it only applies to non-relativistic quantum systems. It also assumes that the particle is free to move in a vacuum and does not take into account interactions with other particles or external forces.

How is the Feynman propagator related to the Green's function in classical mechanics?

The Feynman propagator is related to the Green's function in classical mechanics by the correspondence principle, which states that quantum mechanical systems should reduce to classical systems in the limit of large quantum numbers. In this limit, the Feynman propagator reduces to the classical Green's function.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
740
  • Advanced Physics Homework Help
Replies
1
Views
551
Replies
27
Views
2K
  • Advanced Physics Homework Help
Replies
8
Views
1K
Replies
3
Views
828
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
850
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
1K
Replies
1
Views
646
Back
Top