- Thread starter
- #1

- Thread starter Elissa89
- Start date

- Thread starter
- #1

- Admin
- #2

The first thing I would consider is:

\(\displaystyle 0\le\arccos(x)\le\pi\)

Hence:

\(\displaystyle 0\le\frac{1}{2}\arccos(x)\le\frac{\pi}{2}\)

This means the cosine of the given angle will be non-negative. Next, consider the half-angle identity for cosine:

\(\displaystyle \cos^2\left(\frac{\theta}{2}\right)=\frac{1+\cos(\theta)}{2}\)

Given that the cosine function will be non-negative, we may write:

\(\displaystyle \cos\left(\frac{\theta}{2}\right)=\sqrt{\frac{1+\cos(\theta)}{2}}\)

Can you proceed?