Electric field strength inside a conductor

In summary: Please note that we started with you asking about a conductor. A solid, spherical conductor will have zero electric field inside the conductor under static condition. You cannot equate this with the earth. The Earth with a constant density is similar to a dielectric sphere having a uniform charge density. This...In summary, the electric field strength inside a conductor increases as the radius increases. The second answer on the link I posted above is wrong.
  • #1
Faiq
348
16
I read on physics.stackexchange that using Gauss Law we can prove that the electric field strength increases as the radius increases inside a metallic conductor.

Later on the same website, I encountered a contradicting statement that claimed that inside a conductor, the charges aren't free to move hence a resultant force can't effect the charges inside, giving an electric field strength of 0. My question is which statement is correct?
 
Physics news on Phys.org
  • #2
The magnetic field inside a conductor carrying current increases linearly with the radius. Maybe that's what you read?
 
  • #4
Faiq said:
I read on physics.stackexchange that using Gauss Law we can prove that the electric field strength increases as the radius increases inside a metallic conductor.

Later on the same website, I encountered a contradicting statement that claimed that inside a conductor, the charges aren't free to move hence a resultant force can't effect the charges inside, giving an electric field strength of 0. My question is which statement is correct?

Please read this:

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/gausur.html

Under electrostatic condition, the electric field inside a conductor is zero.

Zz.
 
  • #6
Faiq said:
So would you say the second answer on the link I posted above is wrong?

I wouldn't know. I don't pay attention to stuff posted there. You shouldn't either especially when you have a text that says something to the contrary.

Zz.
 
  • #7
Okay can you tell me one thing
We are often taught that laws of gravitation are almost similar to laws of charges

I read about a derivation which went on to conclude that for distances smaller than Earth radius the Earth's gravitational field strength becomes proportional to the distance from Earth center. What difference is here and the charges that break this symmetry?
 
  • #8
The difference is that electric charges are mobile in a conducting sphere, and they will arrange themselves inside the sphere so that the electric field is zero everywhere inside. The particles creating the gravitational pull (i.e. matter) can't move.
 
  • #9
Oh okay thank you very much.
 
  • #10
Faiq said:
Okay can you tell me one thing
We are often taught that laws of gravitation are almost similar to laws of charges

I read about a derivation which went on to conclude that for distances smaller than Earth radius the Earth's gravitational field strength becomes proportional to the distance from Earth center. What difference is here and the charges that break this symmetry?

1. How well do you know Gauss's Law?

2. Have you seen the Gauss's Law-equivalent for gravitational field?

3. What "symmetry"?

4. If the Earth is considered to be a sphere of uniform density, this is no different than a spherical charge with uniform charge density. If you answer "Yes" to my Q1, then you should be able to do the same for gravitational field inside the earth.

Zz.
 
  • #11
1,2.Well I am senior high school student so I am not very informative on Gauss Law
3. The symmetry I was talking mainly pertains to the Newton's Law of Gravitation and Coulomb's Law for charges. The Force equation seems very similar to each other and in my high school books, when we are studying about one topic often references are given to the other topic, hence the symmetry
4. So I assume for a spherical charge with uniform density, the electric field strength is proportional to the distance from center (for distance smaller than radius). But if the uniform charge density is not given, then electric field strength is 0 everywhere. Correct?
 
  • #12
Faiq said:
1,2.Well I am senior high school student so I am not very informative on Gauss Law

You should always, ALWAYS include such information, especially when you're new here, when asking such question. Otherwise, many of us will waste our time in giving you an explanation that you can't comprehend.

3. The symmetry I was talking mainly pertains to the Newton's Law of Gravitation and Coulomb's Law for charges. The Force equation seems very similar to each other and in my high school books, when we are studying about one topic often references are given to the other topic, hence the symmetry
4. So I assume for a spherical charge with uniform density, the electric field strength is proportional to the distance from center (for distance smaller than radius). But if the uniform charge density is not given, then electric field strength is 0 everywhere. Correct?

I have no idea what you just said here. If the charge density is not given, you cannot assume that it is zero.

Please note that we started with you asking about a conductor. A solid, spherical conductor will have zero electric field inside the conductor under static condition. You cannot equate this with the earth. The Earth with a constant density is similar to a dielectric sphere having a uniform charge density. This is where you will have gravitational field inside and outside of the earth, and electric field inside and outside of the sphere. Whereas a charged spherical conductor will only have an electric field outside the sphere and zero inside.

Zz.
 
  • Like
Likes Faiq
  • #13
It should be noted that this result holds just as well for a hollow sphere. I remember finding it odd when I learned it the first time, but when you do the math, it comes out that way.
 
  • #14
rumborak said:
It should be noted that this result holds just as well for a hollow sphere. I remember finding it odd when I learned it the first time, but when you do the math, it comes out that way.

I'm trying not to include that because the OP seems to want to equate this with the gravitational field of the earth. And since we don't have a "hollow earth"...

Zz.
 
  • #15
ZapperZ said:
You should always, ALWAYS include such information, especially when you're new here, when asking such question. Otherwise, many of us will waste our time in giving you an explanation that you can't comprehend.
I have no idea what you just said here. If the charge density is not given, you cannot assume that it is zero.

Please note that we started with you asking about a conductor. A solid, spherical conductor will have zero electric field inside the conductor under static condition. You cannot equate this with the earth. The Earth with a constant density is similar to a dielectric sphere having a uniform charge density. This is where you will have gravitational field inside and outside of the earth, and electric field inside and outside of the sphere. Whereas a charged spherical conductor will only have an electric field outside the sphere and zero inside.

Zz.
I completely understand what you said. Thank you for such a thorough explanation. Can you please provide me some differences of dielectric charged sphere and a solid spherical conductor?
 
  • #16
It's the exact difference we mentioned. In a conductor the charges can move, in a dielectric they can't. That's why the former has zero field inside, the latter doesn't.
 
  • Like
Likes Faiq
  • #17
rumborak said:
It's the exact difference we mentioned. In a conductor the charges can move, in a dielectric they can't. That's why the former has zero field inside, the latter doesn't.
How is that made possible?
Precisely, what does the dielectric does that prevent the charges from moving? All I learned about dielectric was they are a medium with a permittivity constant >1
 
  • #18
For that I have to refer you to the Wikipedia article on dielectric materials:

https://en.wikipedia.org/wiki/Dielectric

Short answer: Dielectrics are insulators. In insulators, charges don't move (don't move *much*, to be exact. They move a tiny bit, that's what makes them dielectric).
 
  • Like
Likes Faiq
  • #19
Faiq said:
So would you say the second answer on the link I posted above is wrong?
The second answer describes a non-conducting sphere with a uniform charge distribution, which is completely different from the situation presented in the question.
 
  • #20
rumborak said:
For that I have to refer you to the Wikipedia article on dielectric materials:

https://en.wikipedia.org/wiki/Dielectric

Short answer: Dielectrics are insulators. In insulators, charges don't move (don't move *much*, to be exact. They move a tiny bit, that's what makes them dielectric).
Understood. Thank you for helping
 
  • #22
If there is an electric field inside a conductor then charges will move. In a static situation, where charges are not moving, the electric field is zero (otherwise charges would be moving). It's important to state whether the situation is static or not before making a statement about the electric field inside the conductor.
 

Related to Electric field strength inside a conductor

1. What is the difference between electric field strength inside a conductor and outside a conductor?

Inside a conductor, the electric field strength is zero. This is because the free electrons in the conductor redistribute themselves to cancel out any external electric field. Outside the conductor, the electric field strength is non-zero and depends on the charge distribution on the surface of the conductor.

2. How is the electric field strength inside a conductor affected by the shape of the conductor?

The shape of the conductor does not affect the electric field strength inside it. This is because the free electrons in the conductor will still redistribute themselves to cancel out any external electric field, regardless of the shape of the conductor. However, the shape of the conductor may affect the electric field strength outside the conductor due to changes in the charge distribution on the surface.

3. Does the material of the conductor affect the electric field strength inside it?

Yes, the material of the conductor can affect the electric field strength inside it. Conductors with higher electrical conductivity will have a lower electric field strength inside, as the free electrons are able to move more easily to cancel out any external electric field. Additionally, the presence of impurities or defects in the conductor can also affect the electric field strength inside it.

4. How does the electric field strength inside a conductor change when an external electric field is applied?

When an external electric field is applied, the electric field inside the conductor will initially be non-zero. However, the free electrons in the conductor will redistribute themselves to cancel out this external field, resulting in a zero electric field inside the conductor.

5. Can the electric field strength inside a conductor ever be non-zero?

No, the electric field strength inside a conductor will always be zero in a state of equilibrium. This is because the free electrons in the conductor will redistribute themselves to cancel out any external electric field, resulting in a zero net electric field inside the conductor.

Similar threads

  • Electromagnetism
Replies
11
Views
819
  • Electromagnetism
Replies
14
Views
1K
Replies
3
Views
556
Replies
4
Views
1K
  • Electromagnetism
Replies
4
Views
1K
Replies
4
Views
2K
Replies
11
Views
2K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
4
Views
1K
Back
Top