- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,808
Determine the sum \(\displaystyle \sum_{k=1}^n \dfrac{4k}{4k^4+1}\).
Awesome, MarkFL!Here is my solution:
We are given to evaluate:
\(\displaystyle S_n=\sum_{k=1}^n\left(\frac{4k}{4k^4+1} \right)\)
Partial fraction decomposition on the summand allows us to write:
\(\displaystyle S_n=\sum_{k=1}^n\left(\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1} \right)\)
Observing that:
\(\displaystyle 2(k+1)^2-2(k+1)+1=2k^2+2k+1\)
and using the rule of linearity of the summand and re-indexing the first sum, we obtain:
\(\displaystyle S_n=\sum_{k=0}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^n\left(\frac{1}{2k^2+2k+1} \right)\)
Pulling the first term from the first sum and the last term from the second sum, we may write:
\(\displaystyle S_n=1+\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\frac{1}{2n^2+2n+1}\)
The two sums add to zero, and we are left with:
\(\displaystyle S_n=1-\frac{1}{2n^2+2n+1}=\frac{2n(n+1)}{2n^2+2n+1}\)