- Thread starter
- #1
If $\displaystyle v_{\perp}$ is the radial speed is $\displaystyle v_{\perp}= r\ \dot{\nu}$ where $\nu$ is the angle in radians...Why is this true?
$$
h = rv_{\perp} = r(r\dot{\nu})\Rightarrow\dot{\nu} = \frac{h}{r^2}
$$
Look at the last page here to see a visualization.
Wouldn't $v_{\perp}$ be the tangential speed? $v_r$ I would think is the radial speed.If $\displaystyle v_{\perp}$ is the radial speed is $\displaystyle v_{\perp}= r\ \dot{\nu}$ where $\nu$ is the angle in radians...
Kind regards
$\chi$ $\sigma$