Definite Integral ∫xe^(ax)cos(x)dx

In summary, a definite integral is a mathematical concept used to find the area under a curve between two specific points on the x-axis. To solve a definite integral, one must find the indefinite integral of the given function, plug in the upper and lower limits of integration, and subtract the result of the lower limit from the upper limit. The main difference between a definite and indefinite integral is that the former has limits and gives a specific numerical value, while the latter does not have limits and gives a general solution in terms of an unknown constant. The e^(ax)cos(x) term in the given definite integral represents the behavior of a damped harmonic oscillator and is commonly used in physical and engineering applications. Finally, the definite integral ∫xe
  • #1
MarkFL
Gold Member
MHB
13,288
12
Evaluate the following:

\(\displaystyle I=\int_0^{\infty} xe^{ax}\cos(x)\,dx\) where $a<0$
 
Mathematics news on Phys.org
  • #2
My attempt:

My result:

\[\int_{0}^{\infty}xe^{ax}\cos xdx = \frac{a^2-1}{(a^2+1)^2}, \;\;\; a < 0.\]

The solution is obtained by integration by parts several times:

\[I = \int_{0}^{\infty}xe^{ax}\cos xdx = \underbrace{\left [ xe^{ax}\sin x \right ]_0^\infty}_{0} - \int_{0}^{\infty}e^{ax}(1+ax)\sin xdx \\\\ = \underbrace{\int_{0}^{\infty}e^{ax}(-\sin x)dx}_{=I_1}+\underbrace{a\int_{0}^{\infty}xe^{ax}(-\sin x)dx}_{=I_2}\]

Solve the first of the two integrals, $I_1$, in the sum:

\[I_1 = \int_{0}^{\infty}e^{ax}(-\sin x)dx = \underbrace{\left [ e^{ax}\cos x \right ]_0^\infty}_{=-1}-a\int_{0}^{\infty}e^{ax} \cos xdx \\\\ =-1-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_{0}-a\int_{0}^{\infty}e^{ax}\sin xdx \right ) = -1 -a^2\int_{0}^{\infty}e^{ax}(-\sin x)dx = -1 -a^2I_1\\\\ \Rightarrow (a^2+1)I_1 = -1 \Rightarrow I_1 = -\frac{1}{a^2+1}\]

The second integral, $I_2$:

\[I_2 = a\int_{0}^{\infty}xe^{ax}(-\sin x)dx = a\left (\underbrace{\left [ xe^{ax}\cos x \right ]_0^\infty}_0- \int_{0}^{\infty}e^{ax}(1+ax)\cos xdx \right ) \\\\ = a\left ( -\int_{0}^{\infty}e^{ax}\cos xdx -a\int_{0}^{\infty}xe^{ax}\cos xdx\right ) \\\\ =-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_0+a\int_{0}^{\infty}e^{ax}(-\sin x)dx \right )-a^2I \\\\ = -a^2I_1-a^2I\]Finally, we get:

\[I = I_1 + I_2 = -\frac{1}{a^2+1} +\frac{a^2}{a^2+1} -a^2I \\\\ \Rightarrow I = \frac{a^2-1}{(a^2+1)^2}\]
 
  • #3
My attempt:

Let \(\displaystyle I(a) = \int_0^{\infty} e^{ax} \cos(x) \, dx\) for \(\displaystyle a < 0\). Then

\(\displaystyle \begin{aligned} \dfrac{d}{da} I(a) & = \dfrac{d}{da} \int_0^{\infty} e^{ax} \cos(x) \, dx \\ & = \int_0^{\infty} \dfrac{\partial}{\partial a} (e^{ax} \cos(x) ) \, dx \\ & = \int_0^{\infty} x e^{ax} \cos(x) \, dx. \end{aligned}\)

Thus, if we compute \(\displaystyle I(a)\) in terms of \(\displaystyle a\) the result follows by differentiation. Let \(\displaystyle A = \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx\). We have

\(\displaystyle \begin{aligned} A & = \int_0^{\infty} e^{(a+i)x} \, dx \\ & = \dfrac{e^{(a+i)x}}{a+i} \bigg\vert_0^{\infty} \\ & = - \dfrac{1}{a+i} \\ & = - \dfrac{a}{a^2+1} + \dfrac{i}{a^2+1}. \end{aligned}\)

Since \(\displaystyle e^{ix} = \cos(x) + i \sin(x)\) we obtain

\(\displaystyle I(a) = \operatorname{Re} \left( \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx \right) = - \dfrac{a}{a^2+1}.\)

Thus

\(\displaystyle \dfrac{d}{da} I(a) = \int_0^{\infty} x e^{ax} \cos(x) \, dx = \dfrac{d}{da} \left( - \dfrac{a}{a^2+1} \right) = \dfrac{a^2 -1}{(a^2+1)^2}.\)
 
  • #4
My attempt:

Let \(\displaystyle I = \int_0^{\infty}xe^{ax}\cos x dx = - \int_0^{\infty} -x \cdot e^{ax}\cos x dx\).

Now the last part is the Laplace transform of cosine:

\(\displaystyle \int_0^{\infty}e^{ax}\cos x dx = \mathcal{L}\{\cos x\} = \frac{a}{a² + 1}\).

Using the properties of Laplace transform (function times variable) we further obtain

\(\displaystyle I = - \frac{d}{da} \frac{a}{a² + 1} = \frac{a^2 - 1}{(a^2 + 1)^2}\).
 
  • #5
Thanks everyone for all the varied methods! (Yes)

Here's the method I chose:

We are given to evaluate:

\(\displaystyle I=\int_0^{\infty} xe^{ax}\cos(x)\,dx\) where $a<0$

I would write:

\(\displaystyle v(x)=\int xe^{ax}\cos(x)\,dx\)

So that we have the first-order linear inhomogeneous ODE:

\(\displaystyle \d{v}{x}=xe^{ax}\cos(x)\)

Since the homogeneous solution $v_h$ is a constant, we need only find the particular solution, which will have the form:

\(\displaystyle v_p(x)=e^{ax}\left((Ax+B)\cos(x)+(Cx+D)\sin(x)\right)\)

Differentiating w.r.t $x$, and substituting into our ODE, we obtain:

\(\displaystyle \d{v_p}{x}=e^{ax}\left(((aA+C)x+aB+A+D)\cos(x)+((aC-A)x+aD-B+C)\sin(x)\right)=e^{ax}\left((1x+0)\cos(x)+(0x+0)\sin(x)\right)\)

Equating coefficients gives rise to the system:

\(\displaystyle aA+C=1\)

\(\displaystyle aB+A+D=0\)

\(\displaystyle aC-A=0\)

\(\displaystyle aD-B+C=0\)

Solving this system, we obtain:

\(\displaystyle (A,B,C,D)=\left(\frac{a}{a^2+1},\frac{1-a^2}{\left(a^2+1\right)^2},\frac{1}{a^2+1},-\frac{2a}{\left(a^2+1\right)^2}\right)\)

And so, our particular solution may be written:

\(\displaystyle v_p(x)=\frac{e^{ax}}{\left(a^2+1\right)^2}\left((a\left(a^2+1\right)x+1-a^2)\cos(x)+(\left(a^2+1\right)x-2a)\sin(x)\right)\)

Hence, the definite integral in question may be written:

\(\displaystyle I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left(e^{a(0)}\left((a\left(a^2+1\right)(0)+1-a^2)\cos(0)+(\left(a^2+1\right)(0)-2a)\sin(0)\right)\right)\right)\)

\(\displaystyle I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left((1-a^2)\right)\right)=\frac{a^2-1}{\left(a^2+1\right)^2}\)
 

Related to Definite Integral ∫xe^(ax)cos(x)dx

1. What is a definite integral?

A definite integral is a mathematical concept used to find the area under a curve between two specific points on the x-axis. It is represented by the symbol ∫ and has a lower and upper limit of integration.

2. How do you solve a definite integral?

To solve a definite integral, you need to first find the indefinite integral of the given function. Then, plug in the upper and lower limits of integration and subtract the result of the lower limit from the upper limit.

3. What is the difference between a definite integral and an indefinite integral?

A definite integral has limits of integration and gives a specific numerical value, while an indefinite integral does not have limits and gives a general solution in terms of an unknown constant.

4. What is the significance of the e^(ax)cos(x) term in the given definite integral?

The e^(ax)cos(x) term is a trigonometric function that represents the behavior of a damped harmonic oscillator. It is commonly used in physical and engineering applications to model systems that exhibit oscillatory behavior.

5. Can the definite integral ∫xe^(ax)cos(x)dx be solved analytically?

Yes, the definite integral ∫xe^(ax)cos(x)dx can be solved analytically by using integration techniques such as integration by parts or substitution. However, the resulting solution may be complex and involve multiple steps.

Similar threads

  • General Math
Replies
2
Views
1K
Replies
4
Views
979
  • Advanced Physics Homework Help
Replies
10
Views
1K
  • General Math
Replies
0
Views
728
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
  • Math POTW for University Students
Replies
11
Views
1K
Back
Top