# Definite integral challenge

#### MarkFL

Staff member
Suppose $f(-x)=f(x)$, then compute the following definite integral:

$$\displaystyle \int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ where $0<a\in\mathbb{R}$.

#### mathbalarka

##### Well-known member
MHB Math Helper
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Note : Although not related to the original problem that was meant, it is not worthless to note that the calculations above works only if $\frac{1}{1+2^{f(x)}}$ has no vertical asymptotes.

Last edited:

#### MarkFL

Staff member
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$
Haha...that is quite correct (well done!)...but I messed up and actually meant for $f$ to be odd, i.e.:

$$\displaystyle f(-x)=-f(x)$$

#### mathbalarka

##### Well-known member
MHB Math Helper
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$

#### MarkFL

Staff member
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$
That's correct!

Here's my solution:

$$\displaystyle I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$

$$\displaystyle I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}-\frac{1}{2}+\frac{1}{2}\,dx$$

$$\displaystyle I=\frac{1}{2}\int_{-a}^{a}\frac{1-2^{f(x)}}{1+2^{f(x)}}+\frac{1}{2}\int_{-a}^{a}\,dx$$

The first integrand is odd, and the second even, hence:

$$\displaystyle I=0+\int_0^a\,dx=a$$