- Thread starter
- #1

#### DreamWeaver

##### Well-known member

- Sep 16, 2013

- 337

\(\displaystyle \int_0^z\frac{x^m}{(a+\log x)}\,dx\)

[I'll be adding a few generalized forms like this in the logarithmic integrals thread, in Maths Notes, shortly... ]

- Thread starter DreamWeaver
- Start date

- Thread starter
- #1

- Sep 16, 2013

- 337

\(\displaystyle \int_0^z\frac{x^m}{(a+\log x)}\,dx\)

[I'll be adding a few generalized forms like this in the logarithmic integrals thread, in Maths Notes, shortly... ]

- Jan 31, 2012

- 253

$ \displaystyle \int \frac{x^{m}}{a+\ln x} \ dx = \int \frac{e^{u(m+1)}}{a+u} \ du = e^{-a(m+1)} \int \frac{e^{m(w+1)}}{w} \ dw $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( w(m+1) \Big) + C $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( (a+u) (m+1) \Big) + C $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( (a+\ln x) (m+1) \Big) + C $

And I think you need more restrictions on the parameters to guarantee convergence.