Feb 27, 2014 Thread starter #1 Krizalid Active member Feb 9, 2012 118 Let $a_n$ and $b_n$ be sequences in $\mathbb R.$ Show that if $\displaystyle\sum b_n$ converges and $\displaystyle\sum|a_n-a_{n+1}|<\infty,$ then $\displaystyle\sum a_nb_n$ converges.

Let $a_n$ and $b_n$ be sequences in $\mathbb R.$ Show that if $\displaystyle\sum b_n$ converges and $\displaystyle\sum|a_n-a_{n+1}|<\infty,$ then $\displaystyle\sum a_nb_n$ converges.