# Commentary for "Method for Checking the Solutions to a Quadratic"

#### Prove It

##### Well-known member
MHB Math Helper
temp

Moderator edit: This commentary topic pertains to the following tutorial:

And for anyone wondering how we get the Quadratic Formula, it's just completing the square on a standard quadratic equation $$\displaystyle \displaystyle a\,x^2 + b\,x + c = 0$$.

\displaystyle \displaystyle \begin{align*} a\,x^2 + b\,x + c &= 0 \\ a \left( x^2 + \frac{b}{a}\,x + \frac{c}{a} \right) &= 0 \\ x^2 + \frac{b}{a}\,x + \frac{c}{a} &= 0 \\ x^2 + \frac{b}{a}\,x + \left( \frac{b}{2a} \right) ^2 - \left( \frac{b}{2a} \right) ^2 + \frac{c}{a} &= 0 \\ \left( x + \frac{b}{2a} \right) ^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2} &= 0 \\ \left( x + \frac{b}{2a} \right) ^2 &= \frac{b^2 - 4ac}{4a^2} \\ x + \frac{b}{2a} &= \frac{\pm \sqrt{b^2 - 4ac}}{2a} \\ x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \end{align*}

Last edited by a moderator:

#### Ackbach

##### Indicium Physicus
Staff member
Re: Method for Checking the Solutions to a Quadratic

And for anyone wondering how we get the Quadratic Formula, it's just completing the square on a standard quadratic equation $$\displaystyle \displaystyle a\,x^2 + b\,x + c = 0$$.

\displaystyle \displaystyle \begin{align*} a\,x^2 + b\,x + c &= 0 \\ a \left( x^2 + \frac{b}{a}\,x + \frac{c}{a} \right) &= 0 \\ x^2 + \frac{b}{a}\,x + \frac{c}{a} &= 0 \\ x^2 + \frac{b}{a}\,x + \left( \frac{b}{2a} \right) ^2 - \left( \frac{b}{2a} \right) ^2 + \frac{c}{a} &= 0 \\ \left( x + \frac{b}{2a} \right) ^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2} &= 0 \\ \left( x + \frac{b}{2a} \right) ^2 &= \frac{b^2 - 4ac}{4a^2} \\ x + \frac{b}{2a} &= \frac{\pm \sqrt{b^2 - 4ac}}{2a} \\ x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \end{align*}
Right, or you can do a couple other equivalent methods.