# Commentary for "Inverse Sine/Tangent Integrals and related functions"

Staff member

#### ZaidAlyafey

##### Well-known member
MHB Math Helper
Hey Gethin , try proving

$$\displaystyle \int^1_0 \frac{1-a^2 t^2}{(1+a^2t^2)^2}\,\log^2(t) \, dt \,=\frac{2\text{Ti}_2(a)}{a}$$

#### DreamWeaver

##### Well-known member
Re: Commentary for &quot;Inverse Sine/Tangent Integrals and related functions&quot;

Hey Gethin , try proving

$$\displaystyle \int^1_0 \frac{1-a^2 t^2}{(1+a^2t^2)^2}\,\log^2(t) \, dt \,=\frac{2\text{Ti}_2(a)}{a}$$

Damn!!! And there was I just about to go to bed and all... You a bad mammal!

More seriously though, this looks an interesting problem. I'll get "on it like a car bonnet" tomorrow, and then - internet connection allowing - post a reply.

Cheers Z!!

- - - Updated - - -

Incidentally, it looks like a simple differentiation will get me most of the way there, since

$$\displaystyle \frac{d}{dz}\text{Ti}_{m+1}(z)=\frac{\text{Ti}_m(z)}{z}$$

#### DreamWeaver

##### Well-known member
Hey Gethin , try proving

$$\displaystyle \int^1_0 \frac{1-a^2 t^2}{(1+a^2t^2)^2}\,\log^2(t) \, dt \,=\frac{2\text{Ti}_2(a)}{a}$$

Here's my solution...

To start with, make the substitution $$\displaystyle y=at\,$$ to obtain

$$\displaystyle \frac{1}{a}\int_0^a\frac{(1-y^2)}{(1+y^2)^2}\,\log^2(y/a)\,dy=$$

$$\displaystyle \frac{1}{a}\int_0^a\frac{2-(1+y^2)}{(1+y^2)^2}\,\log^2(y/a)\,dy=$$

$$\displaystyle \frac{2}{a}\int_0^a\frac{\log^2(y/a)}{(1+y^2)^2}\,dy- \frac{1}{a}\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy=$$

$$\displaystyle \frac{2}{a}\int_0^a\frac{[(1+y^2)-y^2]\log^2(y/a)}{(1+y^2)^2}\,dy- \frac{1}{a}\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy=$$

$$\displaystyle \left(\frac{2}{a}-\frac{1}{a}\right)\,\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy-\frac{2}{a}\int_0^a\frac{y^2\log^2(y/a)}{(1+y^2)^2}\,dy=$$

$$\displaystyle \frac{1}{a}\,\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy-\frac{2}{a}\int_0^a\frac{y^2\log^2(y/a)}{(1+y^2)^2}\,dy=$$

$$\displaystyle \frac{1}{a}\,\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy+\frac{1}{a}\int_0^a\left[\frac{-2y}{(1+y^2)^2}\right]y\,\log^2(y/a)\,dy$$

The term in large square brackets in the last integral is the derivative:

$$\displaystyle \frac{d}{dy}\frac{1}{(1+y^2)}=\frac{-2y}{(1+y^2)^2}$$

So we can perform an integration by parts on that last integral:

$$\displaystyle \int_0^a\left[\frac{-2y}{(1+y^2)^2}\right]y\,\log^2(y/a)\,dy=$$

$$\displaystyle \frac{y\,\log^2(y/a)}{(1+y^2)}\,\Biggr|_0^a-\int_0^a\frac{1}{(1+y^2)}\left[\log^2(y/a)+2\log(y/a)\right]\,dy=$$

$$\displaystyle -\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy-2\,\int_0^a\frac{\log(y/a)}{(1+y^2)}\,dy$$

Inserting this back into the previous partial evaluation we get

$$\displaystyle \frac{1}{a}\,\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy+\frac{1}{a}\left[-\int_0^a\frac{\log^2(y/a)}{(1+y^2)}\,dy-2\,\int_0^a\frac{\log(y/a)}{(1+y^2)}\,dy\right]=$$

$$\displaystyle -\frac{2}{a}\,\int_0^a\frac{\log(y/a)}{(1+y^2)}\,dy=$$

$$\displaystyle -\frac{2}{a}\,\left[\tan^{-1}y\log(y/a)\,\Biggr|_0^a-\frac{1}{a}\,\int_0^a\frac{\tan^{-1}y}{(y/a)}\,dy\right]=$$

$$\displaystyle \frac{2}{a}\int_0^a\frac{\tan^{-1}y}{y}\,dy=\frac{2}{a}\,\text{Ti}_2(a)\, .\, \Box$$

That was really good fun, Z! If you have any others, I'll happily give them a go... Not saying I'll get them, but always up for a go...

Cheers!!