- Thread starter
- #1

- Thread starter dwsmith
- Start date

- Thread starter
- #1

- Feb 5, 2012

- 1,621

$y''+y = e^{it}+e^{3it}$

Solution

$y = Ae^{it}-\dfrac{1}{8}e^{3it}-\dfrac{it}{2}e^{it}$

This seem to be incorrect. There should be two arbitrary constants since that is a second order differential equation. The correct solution can be found here.

This seems correct. See this.$y''+4y=1+\sin t+\sin 2t$

Solution

$y=A\cos 2t + B\sin 2t + \dfrac{1}{4} + \dfrac{1}{3}\sin t - \dfrac{t}{4}\cos 2t$

Correct?

Kind Regards,

Sudharaka.

- Jan 26, 2012

- 890

When you solve inhomogeneous linear constant coefficient ODE's you start with the general solution to the homogeneous equation, which in this case is:$y''+y = e^{it}+e^{3it}$

Solution

$y = Ae^{it}-\dfrac{1}{8}e^{3it}-\dfrac{it}{2}e^{it}$

\( y''+y=0\)

You use a trial solution \(y=e^{\lambda t}\) and get the charateristic equation \(\lambda^2+1=0\), which has roots \( \lambda=\pm i\).

So the general solution to the homogeneous equation is \(y=Ae^{it}+Be^{-it}\), and you get the general solution to the inhomogeneous equation by adding a particular integral of the equation to this.

Note this solution could also be expressed in terms of trig functions like your next example.

(Also it would be helpful if you posted the full question/s with the original wording).

CB

- Thread starter
- #4

However, I can't obtain it.

So $y_c = Ce^{\pm it} = A\cos t + B\sin t$

If we re-write the problem, we have

$$

y''+y=\cos t + \sin t + e^{3it}

$$

Then the form of $y_p = c_1t\cos t + c_2t\sin t + c_3e^{3it}$

$y''_p=-2c_1\sin t + 2c_2\cos t - c_1t\cos t -c_2t\sin t - 9c_3e^{3it}$

Then

$$

y''+y = -2c_1\sin t +2c_2\cos t -8c_3e^{3it}

$$

So $c_1 = \dfrac{-1}{2}$, $c_2 = \dfrac{1}{2}$, and $c_3 = -\dfrac{1}{8}$

Therefore, $y_p = \dfrac{-t}{2}\cos t + \dfrac{t}{2}\sin t - \dfrac{1}{8}e^{3it}$

So

$$

y=y_c+y_p=A\cos t + B\sin t-\dfrac{t}{2}\cos t + \dfrac{t}{2}\sin t - \dfrac{1}{8}e^{3it}

$$

So what is going wrong?

- Feb 5, 2012

- 1,621

Hi dwsmith,If we re-write the problem, we have

\[y''+y=\cos t + \sin t + e^{3it}\]

This is incorrect. You are missing an \(i\). The correct expression is,

\[y''+y=\cos t + i\sin t + e^{3it}\]

Kind Regards,

Sudharaka.

- Jan 26, 2012

- 890

That is the same thing as:Online Mathematica says the solution is $y=A\cos t + B\sin t -\dfrac{it}{2}e^{it} + \dfrac{1}{4}e^{it} - \dfrac{1}{8}e^{3it}$.

\[y=Ce^{it}+De^{-it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}=Ee^{it}+De^{-it}+\frac{1}{4}e^{it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

To show this write the first two exponentials on the left in Cartesian form, and remember that the coefficients are arbitrary so (most) any transformation you need applied to them still leave you with arbitrary coefficients (also note that they may be complex).

CB

- Thread starter
- #7

Writing the equation as $y''+y = \cos t + i\sin t + e^{3it}$ didn't produce anything promising.

Then $y_p = c_1t\cos t + c_2it\sin t + c_3e^{3it}$ so $y''_p = -2c_1\sin t - c_1t\cos t +2c_2i\cos t - c_2it\sin t -9c_3e^{3it}$.

$y''_p+y_p = 2c_2i\cos t - 2c_1\sin t - 8c_3e^{3it}$

So $c_1 = -1/2$, $c_2 = -i/2$, and $c_3 = -1/8$.

$$

y_p = -1/2t\cos t + 1/2t\sin t -1/8e^{3it}

$$

- Feb 5, 2012

- 1,621

The coefficient \(c_{1}\) is incorrect. It should be, \(c_{1}=-\dfrac{i}{2}\). Then you will get,

Writing the equation as $y''+y = \cos t + i\sin t + e^{3it}$ didn't produce anything promising.

Then $y_p = c_1t\cos t + c_2it\sin t + c_3e^{3it}$ so $y''_p = -2c_1\sin t - c_1t\cos t +2c_2i\cos t - c_2it\sin t -9c_3e^{3it}$.

$y''_p+y_p = 2c_2i\cos t - 2c_1\sin t - 8c_3e^{3it}$

So $c_1 = -1/2$, $c_2 = -i/2$, and $c_3 = -1/8$.

$$

y_p = -1/2t\cos t + 1/2t\sin t -1/8e^{3it}

$$

\[y_p = -\frac{it}{2}\cos t + \frac{t}{2}\sin t -\frac{1}{8}e^{3it}\]

\[y_p = -\frac{it}{2}e^{it} -\frac{1}{8}e^{3it}\]

The general solution is,

\[y=Ce^{it}+De^{-it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

This can be written as,

\[y=\left(C-\frac{1}{4}+\frac{1}{4}\right)e^{it}+De^{-it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

\[\therefore y=\left(C-\frac{1}{4}\right)e^{it}+De^{-it}+\frac{1}{4}e^{it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

Let \(\displaystyle E=\left(C-\frac{1}{4}\right)\). Then,

\[y=Ee^{it}+De^{-it}+\frac{1}{4}e^{it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

Does this clarify your doubts?

- Thread starter
- #9

So the only thing wrong with my original solution was that it was missing $Be^{-it}$ then. Why didn't you all say that to begin with?The coefficient \(c_{1}\) is incorrect. It should be, \(c_{1}=-\dfrac{i}{2}\). Then you will get,

\[y_p = -\frac{it}{2}\cos t + \frac{t}{2}\sin t -\frac{1}{8}e^{3it}\]

\[y_p = -\frac{it}{2}e^{it} -\frac{1}{8}e^{3it}\]

The general solution is,

\[y=Ce^{it}+De^{-it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

This can be written as,

\[y=\left(C-\frac{1}{4}+\frac{1}{4}\right)e^{it}+De^{-it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

\[\therefore y=\left(C-\frac{1}{4}\right)e^{it}+De^{-it}+\frac{1}{4}e^{it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

Let \(\displaystyle E=\left(C-\frac{1}{4}\right)\). Then,

\[y=Ee^{it}+De^{-it}+\frac{1}{4}e^{it}-\frac{1}{8}e^{3it}-\frac{it}{2}e^{it}\]

Does this clarify your doubts?