- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,812
Let $a$ and $b$ be two positive integers. Prove that the integer $ a^2+\Bigl\lceil \dfrac{4a^2}{b}\Bigr\rceil$ is not a square.
(Here $\lceil z \rceil$ denotes the least integer greater than or equal to $z$.)
(Here $\lceil z \rceil$ denotes the least integer greater than or equal to $z$.)