- Thread starter
- #1
Determine \(H(s)\) and specify its region of convergence. Your answer should be consistent with the fact that the system is causal and stable.
In order to find \(H(s)\), we need to find \(X(s)\) and \(Y(s)\).
\begin{align*}
x(t) &= Ri + L\frac{di}{dt} + \frac{1}{C}\int i(t)dt\\
X(s) &= \mathcal{L}\bigg\{i + \frac{di}{dt} + \int i(t)dt\bigg\}\\
&= I(s) + sI(s) - I(0) + \frac{1}{s}I(s)\\
&= I(s)\bigg(1 + s + \frac{1}{s}\bigg)\\
y(t) &= \frac{1}{C}\int i(t)dt\\
&= \mathcal{L}\bigg\{\int i(t)dt\bigg\}\\
&= \frac{1}{s}I(s)\\
H(s) &= \frac{\frac{1}{s}}{1 + s + \frac{1}{s}}\\
&= \frac{1}{s^2 + s + 1}
\end{align*}

What is a causal system?
For convergece, \(\text{Re} \ \{s\} < -\frac{1}{2}\) since the inverse Laplace of H is
\[
\frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\Big(\frac{\sqrt{3}}{2}t\Big).
\]
In order to find \(H(s)\), we need to find \(X(s)\) and \(Y(s)\).
\begin{align*}
x(t) &= Ri + L\frac{di}{dt} + \frac{1}{C}\int i(t)dt\\
X(s) &= \mathcal{L}\bigg\{i + \frac{di}{dt} + \int i(t)dt\bigg\}\\
&= I(s) + sI(s) - I(0) + \frac{1}{s}I(s)\\
&= I(s)\bigg(1 + s + \frac{1}{s}\bigg)\\
y(t) &= \frac{1}{C}\int i(t)dt\\
&= \mathcal{L}\bigg\{\int i(t)dt\bigg\}\\
&= \frac{1}{s}I(s)\\
H(s) &= \frac{\frac{1}{s}}{1 + s + \frac{1}{s}}\\
&= \frac{1}{s^2 + s + 1}
\end{align*}

What is a causal system?
For convergece, \(\text{Re} \ \{s\} < -\frac{1}{2}\) since the inverse Laplace of H is
\[
\frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\Big(\frac{\sqrt{3}}{2}t\Big).
\]