- Thread starter
- #1

- Apr 14, 2013

- 4,601

Having the transformation t=τ+p, I want to calculate the jacobian $\frac{J(t,τ)}{J(τ,p)}$.

Isn't it $$ \frac{J(t,τ)}{J(τ,p)}=\begin{vmatrix}

\frac{ \vartheta t}{\vartheta τ}& \frac{\vartheta t}{\vartheta p} \\

\frac{\vartheta τ}{\vartheta τ} & \frac{\varthetaτ }{\vartheta p}

\end{vmatrix}=\begin{vmatrix}

1& 1 \\

1 & -1

\end{vmatrix}=-1-1=-2$$? But the absolute value of the Jacobian for the convolution is $1$..What did I wrong?