- Thread starter
- #1
Notice that $\dot{x}\dot{\theta} + \ddot{x}\theta = \frac d{dt}(\dot{x}\theta)$, so (assuming that $L$ is a constant) the equation can be written $\frac d{dt}(L\dot{\theta} +\dot{x}\theta) = 0$. You can integrate this once, to get $L\dot{\theta} +\dot{x}\theta = $ const. But you still have the situation of two dependent variables and only one equation, so I don't see how you can go beyond there without further information.Is there a way to break this up into a system of ODEs?
$$
L\ddot{\theta} + \dot{x}\dot{\theta} + \ddot{x}\theta = 0
$$
I know that acceleration is positive and constant and velocity is positive. Does that offer enough information?Notice that $\dot{x}\dot{\theta} + \ddot{x}\theta = \frac d{dt}(\dot{x}\theta)$, so (assuming that $L$ is a constant) the equation can be written $\frac d{dt}(L\dot{\theta} +\dot{x}\theta) = 0$. You can integrate this once, to get $L\dot{\theta} +\dot{x}\theta = $ const. But you still have the situation of two dependent variables and only one equation, so I don't see how you can go beyond there without further information.