- Thread starter
- #1

#### OhMyMarkov

##### Member

- Mar 5, 2012

- 83

I'm asked to find a set that is bounded and that has exactly two limit points, now this is how I am thinking.

Consider the set $A_n = [0,\frac{1}{n}) \cup(2-\frac{1}{n},2]$, if $A_1 = [0,1)\cup(1,2]$, $A_2=[0,1/2)\cup (3/2,2]$. If I let $n$ grow indefinitely, I will have only two limit points, 0 and 2, right?

Any help is appreciated!