- Thread starter
- #1
DreamWeaver
Well-known member
- Sep 16, 2013
- 337
By considering the product of complex numbers
\(\displaystyle (a+ib)\, (\cos \theta +i\sin \theta)\)
prove that
\(\displaystyle b\cos \theta+a\sin\theta=\sqrt{a^2+b^2}\, \sin \left(\theta+\tan^{-1}\frac{b}{a}\right)\)
\(\displaystyle (a+ib)\, (\cos \theta +i\sin \theta)\)
prove that
\(\displaystyle b\cos \theta+a\sin\theta=\sqrt{a^2+b^2}\, \sin \left(\theta+\tan^{-1}\frac{b}{a}\right)\)