- Thread starter
- #1
Hi dwsmith,Is it true that geometric progressions are \leq arithmetic?
So your question seems to be whether the sum of any arithmetic progression is greater than or equal to the sum of any geometric progression. That is not the case. For example, \(1,\,3,\,5\) is an arithmetic progression and \(2,\,4,\,8\) is a geometric progression. But, \(1+3+5=9\mbox{ and }2+4+8=14\)I am wondering if GP $\leq$ AP