Jun 22, 2013 Thread starter #1 ZaidAlyafey Well-known member MHB Math Helper Jan 17, 2013 1,667 \(\displaystyle \int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx \)
Jun 26, 2013 Thread starter #2 ZaidAlyafey Well-known member MHB Math Helper Jan 17, 2013 1,667 The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one . \(\displaystyle \int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx \) Let \(\displaystyle t = 2 \pi x\) \(\displaystyle \begin{align*} \frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\ \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\ &=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\ &=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\ &=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\ &= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\ \end{align*} \) \(\displaystyle \int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} \) If anyone wants to try this sum , otherwise I will solve it in the next thread .
The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one . \(\displaystyle \int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx \) Let \(\displaystyle t = 2 \pi x\) \(\displaystyle \begin{align*} \frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\ \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\ &=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\ &=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\ &=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\ &=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\ &= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\ \end{align*} \) \(\displaystyle \int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} \) If anyone wants to try this sum , otherwise I will solve it in the next thread .
Jun 26, 2013 Thread starter #3 ZaidAlyafey Well-known member MHB Math Helper Jan 17, 2013 1,667 My solution is based on that \(\displaystyle |a|<2 \pi \) . I will try to find a general solution.
Jun 27, 2013 #4 chisigma Well-known member Feb 13, 2012 1,704 The series... $$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$ ... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$ ... and setting in (2) $x=\pi$ we obtain... $$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$ Kind regards $\chi$ $\sigma$
The series... $$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$ ... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$ ... and setting in (2) $x=\pi$ we obtain... $$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$ Kind regards $\chi$ $\sigma$
Jun 27, 2013 Thread starter #5 ZaidAlyafey Well-known member MHB Math Helper Jan 17, 2013 1,667 The other way is using complex analysis \(\displaystyle \sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)\) \(\displaystyle \sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}\) \(\displaystyle \frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} \) \(\displaystyle \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}\)
The other way is using complex analysis \(\displaystyle \sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)\) \(\displaystyle \sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}\) \(\displaystyle \frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} \) \(\displaystyle \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}\)