Welcome to our community

Be a part of something great, join today!

Analysis suggestion

mathworker

Active member
May 31, 2013
118
what is the best best way to start with real and complex analysis i don't have any prior knowledge about them(i think).any suggestions 'bout books or websites.
 

Prove It

Well-known member
MHB Math Helper
Jan 26, 2012
1,403
Re: analysis suggetion

what is the best best way to start with real and complex analysis i don't have any prior knowledge about them(i think).any suggestions 'bout books or websites.
Just make sure you have a decent knowledge of algebra, functions, calculus and complex numbers. You'll learn about the content for Real and Complex Analysis in class...
 

hmmm16

Member
Feb 25, 2012
31
Re: analysis suggetion

A pretty standard introduction to analysis textbook is the principle of mathematical analysis by Rudin. However I would say that this is pretty dense if you have not done any analysis before.

I remember I tried to do some advanced reading for my first course in analysis by Rudin and found it pretty tough (I couldn't really do it). It is a great book have later on though to use along side an analysis course.
 

ZaidAlyafey

Well-known member
MHB Math Helper
Jan 17, 2013
1,667
Re: analysis suggetion

In complex analysis I suggest Fundamentals of complex analysis ... . It is one of the best books in complex analysis I have every read , even though I read around four but it is really really valuable . You just need to read the first 6 chapters until the end of applications of Residue theory . The book is easy to follow and it contains lots of good exercises .
 

Fantini

"Read Euler, read Euler." - Laplace
MHB Math Helper
Feb 29, 2012
342
Re: analysis suggetion

I suggest a recent book on analysis: Mathematical Analysis: A Concise Introduction. The author has taken great care in providing many aids in the first four chapters and only then began to remove the scaffolding.

While Rudin is a classic, let us not forget the mention in its preface that "it is meant for first year graduate or last year undergraduate students." Furthermore, most people who worked through this book did so with the help of a teacher, making it all more reasonable. Tackling Rudin by yourself is a pretty difficult, to say the least, enterprise.

Back to Schröder, it is a comprehensive book. You'll get exposure to all of analysis of one variable, including numerical methods (giving you a taste of numerical analysis), and then moving on to more general settings. The author has explicitly stated that the emphasis is on the methods of real analysis, particularly those that generalize to other contexts. Therefore, most of what you learn is applicable directly mutatis mutandis. I

f you are lacking in motivation, part three of the book is named Applied Analysis, furnishing many examples in diverse areas. It starts off with physics, going through harmonic oscillators, Maxwell's equations, heat equation and diffusion PDEs to name a few, passes by ordinary differential equations in Banach spaces and ends with the Finite Elements Method. He advises the interested readers to go straight to those chapters to have an idea of what can be done.

Amidst part one you have small bits of the theory of Lebesgue integration intervened with the Riemann-Stieltjes integral, showing you what are each strengths and providing insight of why certain definitions and theorems will appear in part two. Part two is where the generalization begins and you get to reap benefits from your efforts in analysis in one variable: he discusses vector spaces, metric spaces, normed spaces and inner product spaces. He gives a thorough explanation of metric spaces topology, which makes for a long but useful chapter. He then proceeds to construct measure spaces and integration in more abstract settings, but since you had such good guidance in one variable and given his focus on methods, many proofs are labelled "see theorem X.Y", and more often than not you will see it is almost copy and paste. In this part you will get a taste of Measure Theory, a slight Introduction to Differential Geometry and Hilbert Spaces, thus demonstrating how analysis isn't an island but a coherent continent connected with many areas of mathematics. (Happy)
 

TheBigBadBen

Active member
May 12, 2013
84
Re: analysis suggetion

In complex analysis I suggest Fundamentals of complex analysis ... . It is one of the best books in complex analysis I have every read , even though I read around four but it is really really valuable . You just need to read the first 6 chapters until the end of applications of Residue theory . The book is easy to follow and it contains lots of good exercises .
I still have this textbook from when I took complex analysis a few years ago, and it has definitely served me well. (Smile)
 

mathworker

Active member
May 31, 2013
118
Re: analysis suggetion

Just make sure you have a decent knowledge of algebra, functions, calculus and complex numbers. You'll learn about the content for Real and Complex Analysis in class...
i am actually shifting on to mechanical engineering in my university education so i am not sure i will be taught real analysis in class