- Thread starter
- #1

#### karush

##### Well-known member

- Jan 31, 2012

- 2,928

1HE1C +JDF0= 2H7GC from calculator

By hand I couldn't get the H

Using

1

2

3

4

5

6

7

8

9

A=10

B=11

C=12

D=13

E=14

F=15

G=16

H=17

I=18

J=19

K=20

- Thread starter karush
- Start date

- Thread starter
- #1

- Jan 31, 2012

- 2,928

1HE1C +JDF0= 2H7GC from calculator

By hand I couldn't get the H

Using

1

2

3

4

5

6

7

8

9

A=10

B=11

C=12

D=13

E=14

F=15

G=16

H=17

I=18

J=19

K=20

- Mar 31, 2013

- 1,346

1HE1C

JDF 0

--------

2H7GC

C+ 0 = C OK

F + 1 = G OK

$E + D = (14 + 13)_{10} = 27_{10} = 17_{20}$ so 7 and carry 1

$H+J + 1 = (17 + 19 + 1)_{10} = 37_{10} = {1H}_{20}$ so H and carry 1

$1+1= 2$

- Mar 1, 2012

- 935

Let $x=20$

1HE1C = $x^4 + 17x^3 + 14x^2 + x + 12x^0$

JDF0 = $19x^3 + 13x^2 + 15x + 0x^0$

sum ...

$x^4 + (20+16)x^3 + (20+7)x^2 + 16x + 12x^0$

$x^4 + 20x^3 + 16x^3 + 20x^2 + 7x^2 + 16x + 12x^0$

$x^4 + x^4 + 16x^3 + x^3 + 7x^2 + 16x + 12x^0$

$2x^4 + 17x^3 + 7x^2 + 16x + 12x^0$ = 2H7GC

- Thread starter
- #4

- Jan 31, 2012

- 2,928

that would be a little bit easier to remember!

Let $x=20$

1HE1C = $x^4 + 17x^3 + 14x^2 + x + 12x^0$

JDF0 = $19x^3 + 13x^2 + 15x + 0x^0$

sum ...

$x^4 + (20+16)x^3 + (20+7)x^2 + 16x + 12x^0$

$x^4 + 20x^3 + 16x^3 + 20x^2 + 7x^2 + 16x + 12x^0$

$x^4 + x^4 + 16x^3 + x^3 + 7x^2 + 16x + 12x^0$

$2x^4 + 17x^3 + 7x^2 + 16x + 12x^0$ = 2H7GC

- Jan 29, 2012

- 1,151

First, C+ 0= C. That's the right-most "digit".Add in base 20

1HE1C +JDF0= 2H7GC from calculator

By hand I couldn't get the H

1+ F= 1+ 15= 16= G. That's the next "digit".

E+ D= 14+ 13= 27= 20+ 7= 17. The next "digit" is 7 and "carry the 1".

That may be what's keeping you from "getting the H".

H+ J= 17+ 19= 36 and "carrying the 1", 27= 20+ 17= 1H. The next "digit" is H and "carry the 1"

With that carry, the last addition is 1+ 1= 2.

That's how we get 2H7GC!

Using

1

2

3

4

5

6

7

8

9

A=10

B=11

C=12

D=13

E=14

F=15

G=16

H=17

I=18

J=19

K=20