- Thread starter
- #1

($A_{n}$) of disjoint members of R, we have that the sum of $f$($A_{n}$) over all n is equal to the image of the countable union under $f$. Prove that the sum of $f$($A_{n}$) is in fact absolutely convergent.

- Thread starter Fermat
- Start date

- Thread starter
- #1

($A_{n}$) of disjoint members of R, we have that the sum of $f$($A_{n}$) over all n is equal to the image of the countable union under $f$. Prove that the sum of $f$($A_{n}$) is in fact absolutely convergent.