- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,522

Prove that $2^{2\sqrt{3}}>10$.

- Thread starter anemone
- Start date

- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,522

Prove that $2^{2\sqrt{3}}>10$.

or $\sqrt{3} > \frac{5}{3}$

hence $2^{2\sqrt{3}} > 2^{2*\frac{5}{3}}\cdots(1)$

Now $2^{2*\frac{5}{3}} =2^{\frac{10}{3}}= \sqrt[3]{2^{10}}= \sqrt[3]{1024}> 10\cdots(2) $

from (1) and (2) we get above