- Thread starter
- #1
chisigma
Well-known member
- Feb 13, 2012
- 1,704
The challenging aspect to the question is the unexspected semplicity of the final result...
Find the sum of the series...
$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)
... where...
$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)
... is the Riemann Zeta Function...
Kind regards
$\chi$ $\sigma$
Find the sum of the series...
$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)
... where...
$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)
... is the Riemann Zeta Function...
Kind regards
$\chi$ $\sigma$